Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
See all formats and pricing
More options …

Anthocyanins in Wheat Seed – A Mini Review

Michaela Havrlentová
  • Corresponding author
  • National Agricultural and Food Center, Plant Production Research Institute Piešťany, Bratislavská cesta 122, SK-92168 Piešťany, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivana Pšenáková
  • Department of Biotechnology, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alžbeta Žofajová
  • National Agricultural and Food Center, Plant Production Research Institute Piešťany, Bratislavská cesta 122, SK-92168 Piešťany, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ľubomír Rückschloss
  • National Agricultural and Food Center, Plant Production Research Institute Piešťany, Bratislavská cesta 122, SK-92168 Piešťany, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Kraic
  • National Agricultural and Food Center, Plant Production Research Institute Piešťany, Bratislavská cesta 122, SK-92168 Piešťany, Slovak Republic
  • Department of Biotechnology, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-10 | DOI: https://doi.org/10.2478/nbec-2014-0001


Improving the micronutrients in food has become an important field of the Second Green Revolution. In recent years, minor bioactive compounds such as polyphenols, pigments and carotenoids, have attracted more and more interest from both researchers and food manufactures as health-promoting and disease-preventing effects in both in vitro and in vivo studies. One of plant pigments, wheat anthocyanins as plant phenolics are increasingly attractive as natural compounds positively affecting consumer´s health and condition moreover wheat is staple food source consumed usually daily. For a purple, blue, or red colour of wheat seed are responsible glycosylated cyanidins, delphinidins, malvinidins, pelargonidins, petunidins, and peonidins located in aleurone layer or pericarp, respectively. Other than white seed colour is not natural for common hexaploid wheat but this trait can be introduced from donors by aimed breeding programs. The way of wheat anthocyanins to provide positive effects for consumer´s physiology is limited due to their specific occurrence in seed parts usually removed during grain milling practice and lower stability during processing to foods

Keywords: phenolics; flavonoid; anthocyanins; wheat grain


  • ARBUZOVA, V.S., MAYSTRENKO, O.I.: Chromosomal location of genes for purple grain colour introgressed in common wheat. Cereal Res. Commun., 28, 2000, 235-237.Google Scholar

  • ARBUZOVA, V.S., MAYSTRENKO, O.I., POPOVA, O.M.: Development of nearisogenic lines of the common wheat cultivar „Saratovskaya 29”. Cereal Res. Commun., 26, 1998, 39-46.Google Scholar

  • BĄKOWSKA-BARCZAK, A.: Acylated anthocyanins as stable, natural food colorants - A review. Pol. J. Food Nutr. Sci., 55, 2005, 107-116.Google Scholar

  • BI, H.H., SUN, Y.W., XIAO, Y.G., XIA, L.Q.: Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm. Euphytica, 195, 2014, 197-207.Google Scholar

  • BREWER, L.R., KUBOLA, J., SIRIAMORNPUN, S., HERALD, T.J., SHI, Y.-Ch.: Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem., 152, 2014, 483-490.Google Scholar

  • BUSTOS, D.V., CALDERINI, D.F., RIEGEL, R.: Anthocyanin content of grains in purple wheat is affected by grain position, assimilate availability and agronomic management. J. Cereal Sci., 55, 2012, 257-264.CrossrefGoogle Scholar

  • CABRITA, L., FOSSEN, T., ANDERSEN, Ø.M.: Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chem., 68, 2000, 101-107.Google Scholar

  • CHALKER-SCOTT, L.: Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol., 70, 1999, 1-9.CrossrefGoogle Scholar

  • CHOI, Y., JEONG, H.-S., LEE, J.: Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem., 103, 2007, 130-138.CrossrefGoogle Scholar

  • CHU, J., YAO, X., ZHANG, Z.: Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res., 136, 2010, 355-363.PubMedCrossrefGoogle Scholar

  • CLIFFORD, M.N.: Anthocyanins - nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 2000, 1063-1072.CrossrefGoogle Scholar

  • DEDIO, W., HILL, R.D., EVANS, L.E.: Anthocyanins in the perikarp and coleoptiles of purple wheat. Can. J. Plant Sci., 52, 1972, 977-980.CrossrefGoogle Scholar

  • DINELLI, G., SEGURA CARRETERO, A., DI SILVESTRO, R., MAROTTIA, I., FUB, S., BENEDETTELLI, S., GHISELLI, L., FERNÁNDEZ GUTIÉRREZ, A.: Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 1216, 2009, 7229-7240.Google Scholar

  • DOBROVOLSKAYA, O., ARBUZOVA, V.S., LOHWASSER, U., RÖDER, M.S., BÖRNER, A.: Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica, 150, 2006, 355-364.Google Scholar

  • DUBCOVSKY, J., LUO, M.-C., ZHONG, G.-Y., BRANSTEITTER, R., DESAI, A., KILIAN, A., KLEINHOFS, A., DVORAK, J.: Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics, 143, 1996, 983-999.Google Scholar

  • ETICHA, F., GRAUSGRUBER, H., SIEBENHANDL-EHN, S., BERGHOFER, E.: Some agronomic and chemical traits of blue aleurone and purple pericarp wheat (Triticum L.). J. Agric. Sci. Technol., B1, 2011, 48-58.Google Scholar

  • GIUSTI, M.M., WROLSTAD, R.E.: Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering J., 14, 2003, 217-225.Google Scholar

  • GORDEEVA, E.I., SHOEVA, O.Y., KHLESTKINA, E.K.: Cold stress response of wheat genotypes having different Rc alleles. Cereal Res. Commun., 41, 2013, 519-526.CrossrefGoogle Scholar

  • GRIFFIN, W. B.: Out-crossing in New Zealand wheat measured by occurrence of purple grain. New Zealand J. Agric. Res., 30, 1987, 287-290.CrossrefGoogle Scholar

  • GUO, Z., XU, P., ZHANG, Z., GUO, Y.: Segregation ratios of colored grains in F1 hybrid wheat. Crop Breed. Appl. Biot., 12, 2012, 126-131.CrossrefGoogle Scholar

  • GUO, Z.F., ZHANG, Z.B., XU, P., GUO, Y.N.: Analysis of nutrient composition of purple wheat. Cereal Res. Commun., 41, 2013, 293-303.CrossrefGoogle Scholar

  • HIMI, E., NISAR, A., NODA, K.: Colour genes (R and Rc) for grain and coleoptile unregulate flavonoid biosynthesis genes in wheat. Genome, 48, 2005, 747-754.CrossrefGoogle Scholar

  • HIMI, E., NODA, K.: Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica, 143, 2005, 239-242.Google Scholar

  • HODGSON, J.M., CROFT, K.D.: Dietary flavonoids: effects on endothelial function and blood pressure. J. Sci. Food Agric., 86, 2006, 2492-2498.CrossrefGoogle Scholar

  • HOSSEINIAN, F.S., LI, W., BETA, T.: Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem., 109, 2008, 916-924.CrossrefGoogle Scholar

  • HOLTON, T.A., CORNISH, E.C.: Genetics and biochemistry of anthocyanin biosynthesis. Pl. Cell, 7, 1995, 1071-1083.Google Scholar

  • HU, C., CAI, Y.-Z., LI, W., CORKE, H., KITTS, D.D.: Anthocyanin characterization and bioactivity assessment of a dark blue grained wheat (Triticum aestivum L. cv.Google Scholar

  • Hedong Wumai) extract. Food Chem., 104, 2007, 955-961.Google Scholar

  • HURD, E.A.: Inheritance of blue kernel colour in wheat. Can. J. Plant Sci., 39, 1959, 1-8.CrossrefGoogle Scholar

  • IBANOĞLU, E.: Kinetic study on colour changes in wheat germ due to heat. J. Food Engineering, 51, 2002, 209-213.Google Scholar

  • IQBAL, S., BHANGERB, M.I., ANWARC, F.: Antioxidant properties and components of bran extracts from selected wheat varieties commercially available in Pakistan. LWT-Food Sci. Technol., 40, 2007, 361-367.CrossrefGoogle Scholar

  • IWASHINA, T.: The structure and distribution of the flavonoids in plants. J. Plant Res., 113, 2000, 287-299.CrossrefGoogle Scholar

  • JACOBS, D.R., STEFFEN, L.M.: Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr., 78, 2003, 508S-513S.Google Scholar

  • KAY, C.D.: Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr. Res. Rev., 19, 2006, 137-146.PubMedCrossrefGoogle Scholar

  • KEPPENNE, V.D., BAENZIGER, P.S.: Inheritance of the blue aleurone trait in diverse wheat crosses. Genome, 33, 1990, 525-529.Google Scholar

  • KHLESTKINA, E.K.: The adaptive role of flavonoids: Emphasis on cereals. Review. Cereal Res. Commun., 41, 2013, 185-198.CrossrefGoogle Scholar

  • KHLESTKINA, E.K., ANTONOVA, E.V., PERSHINA, L.A., SOLOVIEV, A.A., BADAEVA, E.D., BÖRNER, A., SALINA, E.A.: Variability of Rc (red coleoptile) alleles in wheat and wheat-alien genetic stock collections. Cereal Res. Commun., 39, 2011, 465-474. CrossrefGoogle Scholar

  • KHLESTKINA, E.K., RÖDER, M.S., BÖRNER, A.: Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid beat (Triticum durum L.). Euphytica, 171, 2010, 65-69.Google Scholar

  • KHLESTKINA, E.K., RÖDER, M.S., PSHENICHNIKOVA, T.A., SIMONOV, A.V., SALINA, E.A., BÖRNER, A.: Genes for anthocyanins pigmentation in wheat: Review and microsatellite-based mapping. In: VERRITY, J.F., ABBINGTON, L.E. (Eds.) Chromosome mapping research development. Nova Science Publishers Inc., New York, 2008, 155-175.Google Scholar

  • KNIEVEL, D.C., ABDEL-AAL, E.-S.M., RABALSKI, I., NAKAMURA, T., HUCL, P.: Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cereal Sci., 50, 2009, 113-120.CrossrefGoogle Scholar

  • KNOTT, D.R.: The inheritance in wheat of a blue endosperm colour derived from Agropyron elongatum. Can. J. Botany, 36, 1958, 571-574.CrossrefGoogle Scholar

  • KONG, J.-M., CHIA, L.-S., GOH, N.-K., CHIA, T.-F., BROUILLARD, R.: Analysis and biological activities of anthocyanins. Phytochemistry, 64, 2003, 923-933.CrossrefPubMedGoogle Scholar

  • LI, W., BETA, T., SUN, S., CORKE, H.: Protein characteristics of Chinese blackgrained wheat. Food Chem., 98, 2006, 463-472.CrossrefGoogle Scholar

  • LI, W., PICKARD, M.D., BETA, T.: Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem., 104, 2007, 1080-1086.CrossrefGoogle Scholar

  • LI, W., SHAN, F., SUN, S., CORKE, H., BETA, T.: Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem., 53, 2005, 8533-8536.CrossrefGoogle Scholar

  • LIU, R.H.: Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., 134, 2004, 3479S-3485S.Google Scholar

  • LIU, R.H.: Whole grain phytochemicals and health. J. Cereal Sci., 46, 2007, 207-219.CrossrefGoogle Scholar

  • LIU, M.-S., WANG, F., DONG, Y.-X., ZHANG, X.-S.: Expression analysis of dihydroflavonol 4-reductase genes involved in anthocyanin biosynthesis in purple grains of wheat. J. Integr. Plant Biol., 47, 2005, 1107-1114.Google Scholar

  • LIU, Q., QIU, Y., BETA, T.: Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J. Agric. Food Chem., 58, 2010, 9235-9241.CrossrefGoogle Scholar

  • LIYANA-PATHIRANA, C.M., SHAHIDI, F.: Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem., 101, 2007, 1151-1157.CrossrefGoogle Scholar

  • MANACH, C., SCALBERT, A., MORAND, C., RÉMÉSY, C., JIMÉNEZ, L.: Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 79, 2004, 727-747.Google Scholar

  • MAZZA, G., BROUILLARD, R.: Recent developments in the stabilization of anthocyanins in food products. Food Chem., 25, 1987, 207-225.CrossrefGoogle Scholar

  • MAZZARACCHIO, P., TOZZI, S., BARBIROLI, G., KINDL, M., PIFFERI, P.G.: Adsorption behaviour of some anthocyanins by wheat gluten and its fractions in acidic conditions. Int. J. Food Sci. Technol., 47, 2012, 390-398.CrossrefGoogle Scholar

  • McINTOSH, R.A., BAKER, E.P.: Inheritance of purple pericarp in wheat. Proceedings of the Linnean Society of New South Wales, Sydney, 92, 1967, 204-208. Google Scholar

  • McINTOSH, R.A., HART, G.E., DEVOS, K.M., GALE, M.D., ROGERS, W.J.: Catalogue of gene symbols for wheat. In: SLINKARD, A.E. (Ed.) Proceedings of the 9th International Wheat Genetics Symposium. University Extension Press, University of Saskatchewan, Saskatoon, 1998, 235-248.Google Scholar

  • MIYAMOTO, T., EVERSON, E.H.: Biochemical and physiological studies of wheat seed pigmentation. Agron. J., 50, 1958, 733-734.Google Scholar

  • PIECH, J., EVANS, L.E.: Monosomic analysis of purple grain colour in hexaploid wheat. Plant Breeding, 82, 1979, 212-217.Google Scholar

  • PRIOR, L.R., WU, X.: Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Res., 40, 2006, 1014-1028.CrossrefGoogle Scholar

  • RYAN, K.G., SWINNY, E.E., WINEFIELD, C., MARKHAM, K.R.: Flavonoid and UV photoprotection in Arabidopsis mutants. Z. Naturforschung, 56c, 2001, 745-754.Google Scholar

  • SCHIJLEN, E.G.W.M., RIC DE VOS, C.H., VAN TUNEN, A.J., BOVY, A.G.: Modification of flavonoid biosynthesis in crop plants. Phytochemistry, 65, 2004, 2631-2648.CrossrefGoogle Scholar

  • SIEBENHANDL, S., GRAUSGRUBER, H., PELLEGRINI, N., DEL RIO, D., FOGLIANO, V., PERNICE, R., BERGHOFER, E.: Phytochemical profile on main antioxidant in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem., 55, 2007, 8541-8547.CrossrefGoogle Scholar

  • TEMPLE, N.J.: Antioxidants and disease: more questions than answers. Nutr. Res., 20, 2000, 449-459.CrossrefGoogle Scholar

  • TERESHCHENKO, O.Y., GORDEEVA, E.I., ARBUZOVA, V.S., BÖRNER, A., KHLESTKINA, E.K.: The D genome carries a gene determining purple grain colour in wheat. Cereal Res. Commun., 40, 2012, 334-341.CrossrefGoogle Scholar

  • TREUTTER, D.: Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett., 4, 2006, 147-157.CrossrefGoogle Scholar

  • VACULOVÁ, K., JIRSA, O., MARTINEK, P., BALOUNOVÁ, M.: Grain quality assessment of non-traditional wheat samples and barley samples with hulless grain. Obilnářské listy, 18, 2010, 71-77.Google Scholar

  • VAHER, M., MATSO, K., LEVANDI, T., HELMJA, K., KALJURAND, M.: Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem., 2, 2010, 76-82.CrossrefGoogle Scholar

  • VARGA, M., BÁNHIDY, J., CSEUZ, L., MATUZ, J.: The anthocyanin content of blue and purple coloured wheat cultivars and their hybrid generations. Cereal Res. Commun., 41, 2013, 284-292.CrossrefGoogle Scholar

  • WINKEL-SHIRLEY, B.: Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 126, 2001, 485-493.CrossrefGoogle Scholar

  • WITTMACK, L.: Die Königliche Landwirtschaftliche Hochschule in Berlin. In: PAREY, P. (Ed.) Festschrift zur Feier des 25jährigen Bestehens.Google Scholar

  • Verlagsbuchhandlung. Paul Parey, Berlin, 1906, 184-245.Google Scholar

  • ZELLER, F.J., CERMENO, M.C., MILLER, T.E.: Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains. TAG, 81, 1991, 551-558. Google Scholar

  • ZEVEN, A.C.: Wheats with purple and blue grains: A review. Euphytica, 56, 1991, 243-258.CrossrefGoogle Scholar

  • ŽOFAJOVÁ, A., PŠENÁKOVÁ, I., HAVRLENTOVÁ, M., PILIAROVÁ, M.: Accumulation of total anthocyanins in wheat grain. Agriculture (Poľnohospodárstvo), 58, 2012, 50-56. Google Scholar

About the article

Published Online: 2014-07-10

Published in Print: 2014-06-01

Citation Information: Nova Biotechnologica et Chimica, Volume 13, Issue 1, Pages 1–12, ISSN (Online) 1338-6905, DOI: https://doi.org/10.2478/nbec-2014-0001.

Export Citation

© by Michaela Havrlentová. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Agnieszka Rosińska, Hanna Dorna, Dorota Szopińska, and Katarzyna Seidler-Łożykowska
Herba Polonica, 2017, Volume 63, Number 1
Malihe Khalili, Mohammad Abedi, and Hossein Salar Amoli
Ionics, 2017, Volume 23, Number 3, Page 779
Sangam L. Dwivedi, Hari D. Upadhyaya, Ill-Min Chung, Pasquale De Vita, Silverio García-Lara, Daniel Guajardo-Flores, Janet A. Gutiérrez-Uribe, Sergio O. Serna-Saldívar, Govindasamy Rajakumar, Kanwar L. Sahrawat, Jagdish Kumar, and Rodomiro Ortiz
Frontiers in Plant Science, 2016, Volume 7

Comments (0)

Please log in or register to comment.
Log in