Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
See all formats and pricing
More options …

The Effects of Combinatorial Chemistry and Technologies on Drug Discovery and Biotechnology – a Mini Review

Pierfausto Seneci
  • Corresponding author
  • Dipartimento di Chimica, Università degli Studi di Milano, Viale Golgi 19, I-20133 Milan, Italy
  • CISI scrl, Via Fantoli 16/15, I-20138 Milan, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giorgio Fassina / Vladimir Frecer
  • Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovakia
  • International Centre for Applied Research and Sustainable Technology (ICARST), Jamnickeho 18, SK-84104 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanislav Miertus
  • International Centre for Applied Research and Sustainable Technology (ICARST), Jamnickeho 18, SK-84104 Bratislava, Slovakia
  • Faculty of Natural Sciences, University of SS. Cyril & Methodius, Nam. J. Herdu 2, SK-91701 Trnava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/nbec-2015-0001


The review will focus on the aspects of combinatorial chemistry and technologies that are more relevant in the modern pharmaceutical process. An historical, critical introduction is followed by three chapters, dealing with the use of combinatorial chemistry/high throughput synthesis in medicinal chemistry; the rational design of combinatorial libraries using computer-assisted combinatorial drug design; and the use of combinatorial technologies in biotechnology. The impact of “combinatorial thinking” in drug discovery in general, and in the examples reported in details, is critically discussed. Finally, an expert opinion on current and future trends in combinatorial chemistry and combinatorial technologies is provided.

Keywords : combinatorial chemistry; combinatorial technologies; compound libraries; computer-assisted combinatorial drug design; virtual screening; display libraries; chemical tools; chemical biology; target identification; fragment-based drug design; combinatorial proteomics


  • ACEVEDO-ROCHA, CG., HOEBENREICH, S., REETZ, MT.: Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution. Methods Mol. Biol., 1179,2014, 103-28.Google Scholar

  • AGRAFIOTIS, D. K.: Multiobjective optimization of combinatorial libraries. J. Comput. Aided. Mol. Des., 16, 2002, 335-356.CrossrefGoogle Scholar

  • ALDANA-MASANGKAY, G. I., RODRIGUEZ-GONZALEZ, A., LIN, T., IKEDA, A.K., HSIEH, Y.T., KIM, Y.M., LOMENICK, B., OKEMOTO, K., LANDAW, E.M., WANG, D., MAZITSCHEK, R., BRADNER, J.E., SAKAMOTO, K.M.: Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells. Leuk. Lymphoma, 52, 2011, 1544−1555.CrossrefGoogle Scholar

  • ASHOK, B.T., DAVID, L., CHEN, Y.G., GARIKAPATY, V.P., CHANDER, B., KANDUC, D., MITTELMAN, A., TIWARI, R.K.: Peptide mimotopes of oncoproteins as therapeutic agents in breast cancer. Int. J. Mol. Med., 11, 2003, 465-71.PubMedGoogle Scholar

  • BANFI, L., RIVA, R.: The Passerini reaction. Org. React., 65, 2005, 1-140.Google Scholar

  • BEAVERS, M.P., CHEN, X.: Structure-based combinatorial library design: methodologies and applications. J. Mol. Graph. Model., 20, 2002, 463-468.CrossrefGoogle Scholar

  • BIENAYMÉ, H., BOUZID, K.: A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed., 37, 1998, 2234-2237.CrossrefGoogle Scholar

  • BLACKWELL, H. E., PEREZ, L., STAVENGER, R. A., STAVENGER, R.A., TALLARICO, J.A., COPE EATOUGH, E., FOLEY, M.A., SCHREIBER, S.L.: A one bead, one-stock solution approach to chemical genetics: part 1. Chem. Biol., 8, 2001, 1167-1182.PubMedCrossrefGoogle Scholar

  • BLUNDELL, T. L., PATEL, S.: High-throughput X-ray crystallography for drug discovery. Curr. Opin. Pharmacol., 4, 2004, 490-496.PubMedCrossrefGoogle Scholar

  • BOENS, N., LEEN, V., DEHAEN, W.: Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41, 2012, 1130-1172.CrossrefPubMedGoogle Scholar

  • BÖHM, H. J., BANNER, D. W., WEBER, L.: Combinatorial docking and combinatorial chemistry: design of non-peptide thrombin inhibitors. J. Comput.- Aided Mol. Design, 13, 1999, 51-56.Google Scholar

  • BÖHM, H. J., STAHL, M.: Structure-based library design: molecular modelling merges with combinatorial chemistry. Curr. Opin. Chem. Biol., 4, 2000, 283-286.PubMedCrossrefGoogle Scholar

  • BUNIN, B. A., PLUNKETT, M. J., ELLMAN, J. A.: The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc. Natl. Acad. Sci. U.S.A., 91, 1994, 4708-4712.Google Scholar

  • BUTZ, S., RAWER, S., RAPP, W., BIRSNER, U.: Immunization and affinity purification of antibodies using resin-immobilized lysine-branched synthetic peptides. Pept. Res., 7, 1994, 20-23.PubMedGoogle Scholar

  • CASALI, P., SCHETTINO, E. W. Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 1996, 210, 167-179.Google Scholar

  • CLEMONS, P. A., KOEHLER, A. N., WAGNER, B. K., SPRIGINGS, T.G., SPRING, D.R., KING, R.W., SCHREIBER, S.L., FOLEY, M.A.: A one-bead, one-stock solution approach to chemical genetics: part 2. Chem. Biol., 8, 2001, 1183-1195.CrossrefPubMedGoogle Scholar

  • COBB, R. E., CHAO, R., ZHAO, H.: Directed evolution: Past, present, and future. AIChE J., 59, 2013, 1432-1440.CrossrefPubMedGoogle Scholar

  • CORTHALS, G. L., WASINGER, V. C., HOCHSTRASSER, D. F., SANCHEZ, J. C.: The dynamic range of protein expression: A challenge for proteomic research. Electrophoresis, 21, 2000, 1104-1115.PubMedCrossrefGoogle Scholar

  • D’YDEWALLE, C., KRISHNAN, J., CHIHEB, D. M., Van DAMME, P., IROBI, J., KOZIKOWSKI, A.P., VANDEN BERGHE, P., TIMMERMAN, V., ROBBERECHT, W., Van DEN BOSCH, L.: HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med., 17, 2011, 968-974.CrossrefGoogle Scholar

  • DAWIS, I. W., BAKER, D.: RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol., 385, 2009, 381-392.Google Scholar

  • DE ZOETEN, E. F., WANG, L., BUTLER, K., BEIER, U.H., AKIMOVA, T., SAI, H., BRADNER, J.E., MAZITSCHEK, R., KOZIKOWSKI, A.P., MATTHIAS, P., HANCOCK, W.W.: Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. Mol. Cell. Biol., 31, 2011, 2066-2078.Google Scholar

  • DOMINGUEZ, J. M.: High throughput combinatorial methods for heterogeneous catalysts design and development. In: Fassina G, Miertus S, Eds. Combinatorial Chemistry and Technologies, 2nd Edition. CLC Press LCC, Boca Raton, 2005, 369-388.Google Scholar

  • DUFFY, B. C., ZHU, L., DECORNEZ, H., KITCHEN, D. B.: Early phase drug discovery: Cheminformatics and computational techniques in identifying lead series. Bioorg. Med. Chem., 20, 2012, 5324-5342.PubMedCrossrefGoogle Scholar

  • ER, J. C., TANG, M. K., CHIA, C. G., LIEW, H., VENDRELL, M., CHANG, Y-T.: MegaStokes BODIPY-triazoles as environmentally sensitive turn-on fluorescent dyes. Chem. Sci., 4, 2013, 2168-2176.CrossrefGoogle Scholar

  • ERLANSON, D. A.: Fragment-based lead discovery: a chemical update. Curr. Opin. Biotech., 17, 2006, 643-652.CrossrefGoogle Scholar

  • ESTIU, G., GREENBERG, E., HARRISON, C. B., KWIATKOWSKI, N.P., MAZITSCHEK, R., BRADNER, J.E., WIEST, O.: Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J. Med. Chem., 51, 2008, 2898-2906.CrossrefGoogle Scholar

  • FASSINA, G., SCARDINO, P., RUVO, M., FUCILE, P., AMODEO, P., CASSANI, G.: Synthesis of conformationally constrained dimeric peptide libraries. In: Maia H, Ed. Peptides 1994. Leiden, ESCOM, 1995, 489-490.Google Scholar

  • FASSINA, G., VERDOLIVA, A., ODIERNA, M. R., RUVO, M., CASSINI, G.: Protein A mimetic peptide ligand for affinity purification of antibodies. J. Mol. Recognit., 9, 1996, 564-569.CrossrefGoogle Scholar

  • FASSINA, G.: Oriented immobilization of peptide ligands on solid supports. J. Chromatogr., 591, 1992, 99-106.Google Scholar

  • FODOR, S. P. A., READ, J. L., PIRRUNG, M. C., STRYER, L., LIU, A. T., SOLAS, D.: Light-directed, spatially addressable parallel chemical synthesis. Science, 251,1991, 767.Google Scholar

  • FOURNIER, A., COUVINEAU, A., LABURTHE, M.: Synthesis of a hydrophilic affinity matrix for the purification of the vasoactive intestinal peptide receptor. Anal. Biochem., 211,1992, 305-310.Google Scholar

  • FRECER, V., BURELLO, E., MIERTUS, S.: Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1. Bioorg. Med. Chem., 13, 2005, 5492-5501.Google Scholar

  • FRECER, V., MEGNASSAN, E., MIERTUS, S.: Design and in silico screening of combinatorial library of antimalarial analogs of triclosan inhibiting Plasmodium falciparum enoyl-acyl carrier protein reductase. Eur. J. Med. Chem., 44, 2009, 3009-3019.CrossrefGoogle Scholar

  • FRECER, V., MIERTUS, S., TOSSI, A., ROMEO, D.: Rational design of inhibitors for drug-resistant HIV-1 aspartic protease mutants. Drug Des. Disc., 15, 1998, 211-231.Google Scholar

  • FRECER, V., MIERTUS, S.: Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease. J. Comp.-Aided Mol. Des., 24, 2010, 195-212.Google Scholar

  • FRECER, V., SENECI, P., MIERTUS, S.: Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of mycobacterium tuberculosis thymidine monophosphate kinase. J. Comp.-Aided Mol. Des., 25,2011, 31-49.Google Scholar

  • FURKA, A., SEBESTYEN, F., ASGEDOM, M., DIBO, G.: Cornucopia of peptide synthesis. Highlights of Modern Biochemistry, Proceedings of the 14th International Congress of Biochemistry, VSP. Utrecht, The Netherland, 1988, Vol. 5, p. 47.Google Scholar

  • FURKA, A., SEBESTYEN, F., ASGEDOM, M., DIBO, G.: General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Peptide Protein Res., 37, 1991, 487-493.Google Scholar

  • GAZOULI, M., HAN, Z., PAPADOPOULOS, V.: Identification of a peptide antagonist to the peripheral type benzodiazepine receptor (PBR) that inhibits hormone stimulated Leydig cell steroid formation. J. Pharmacol. Exp. Ther., 303, 2002, 627-632.Google Scholar

  • GEYSEN, H. M., BARTELING, S. J., MELOEN, R. H.: Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc. Natl. Acad. Sci. USA, 82, 1985, 178-182.CrossrefGoogle Scholar

  • GEYSEN, H. M., MELOEN, R. H., BARTELING, S. J.: Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA., 81, 1984, 3998-4002.CrossrefGoogle Scholar

  • GILLET, V., KHATIB, W., WILLETT, P., FLEMING, P.J, GREEN, D.V.: Combinatorial library design using a multiobjective genetic algorithm. J. Chem. Inf. Comput. Sci., 42, 2002, 375-385.CrossrefGoogle Scholar

  • GILLET, V. J.: Reactant- and product-based approaches to the design of combinatorial libraries. J. Comp. Aided Mol. Des., 16, 2002, 371-380.CrossrefGoogle Scholar

  • GREENBERG, A. H.: Antibodies and natural immunity. Biomed. Pharmacother., 39, 1985, 4-6.PubMedGoogle Scholar

  • GRIFFITH, R., LUU, T. T., GARNER, J., KELLER, P. A.: Combining structurebased drug design and pharmacophores. J. Mol. Graph. Model., 23, 2005, 439-446.CrossrefGoogle Scholar

  • GROZINGER, C. M., SCHREIBER, S. L.: Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol., 9, 2002, 3-16.CrossrefPubMedGoogle Scholar

  • HAGGARTY, S. J., KOELLER, K. M., WONG, J. C., GROZINGER, C.M., SCHREIBER, S.L.: Domain-selective small molecule inhibitor of HDAC6- mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA, 100, 2003, 4389-4394.CrossrefGoogle Scholar

  • HAGGARTY, S. J., KOELLER, K. M., WONG, J. C., BUTCHER, R.A., SCHREIBER, S.L.: Multidimensional chemical genetic analysis of diversityoriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol., 10, 2003, 383-396.CrossrefPubMedGoogle Scholar

  • HAJDUK, P. J., GREER, J. A.: decade of fragment-based drug design: strategic advances and lesions learned. Nat. Rev. Drug Discov., 6, 2007, 211-219.CrossrefGoogle Scholar

  • HEIKAMP, K., BAJORATH, J.: The future of virtual compound screening. Chem. Biol. Drug Des., 81, 2013, 33-40.CrossrefPubMedGoogle Scholar

  • HOUGHTEN, R. A., PINILLA, C., BLONDELLE, S. E., APPEL, J. R., DOOLEY, C. T., CUERVO, J. H.: Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature, 354, 1991, 84-86.Google Scholar

  • HOUGHTEN, R. A.: General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA, 82, 1985, 5131-5135. CrossrefGoogle Scholar

  • HUBBARD, R. E., CHEN, I., DAVIS, B.: Informatics and modeling challenges in fragment-based drug discovery. Curr. Opin. Drug. Discov. Devel., 10, 2007, 289-297.PubMedGoogle Scholar

  • JACOBSEN, B., GÅRDSVOLL, H., FUNCH, G. J., ØSTERGAARD, S., BARKHOLT, V., PLOUG, M.: One-step affinity purification of recombinant urokinase-type plasminogen activator receptor using a synthetic peptide developed by combinatorial chemistry. Prot. Expr. Purific., 52, 2007, 286-296.CrossrefGoogle Scholar

  • JOSE, J.: Autodisplay: efficient bacterial surface display of recombinant proteins. Appl. Microbiol. Biot., 69, 2006, 607-617.CrossrefGoogle Scholar

  • KALIN, J. H., BERGMAN, J. A.: Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J. Med. Chem., 56, 2013, 6297-6313.CrossrefGoogle Scholar

  • KASAIAN, M. T., CASALI, P.: Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity, 15, 1993, 315-329.Google Scholar

  • KASAIAN, M. T., IKEMATSU, H., CASALI, P.: Identification and analysis of a novel human surface CD5- B lymphocyte subset producing natural antibodies. J. Immunol., 148, 1992, 2690-2702.Google Scholar

  • KIJIMA, M., YOSHIDA, M., SUGITA, K., HORINOUCHI, S., BEPPU, T.: Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem., 268, 1993, 22429-22435.Google Scholar

  • KITCHEN, D. B., DECORNEZ, H., FURR, J. R., BAJORATH, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 3, 2004, 935-949.CrossrefPubMedGoogle Scholar

  • KOCHETKOV, N. K.: Catalytic antibodies: prospects for the use in organic synthesis. Russ. Chem. Rev., 67, 1998, 999-1029.CrossrefGoogle Scholar

  • KODADEK, T.: The rise, fall and reinvention of combinatorial chemistry. Chem. Commun., 47, 2011, 9757-9763.CrossrefGoogle Scholar

  • KUBINYI, H.: The design of combinatorial libraries. Drug Discov. Today, 7, 2002, 503-504.PubMedCrossrefGoogle Scholar

  • LAM, K. S., SALMON, S. E., HERSH, E. M., HRUBY, V. J., KAZMIERSKI, W. M., KNAPP, R. J.: A new type of synthetic peptide library for identifying ligandbinding activity. Nature, 354, 1991, 82-84.Google Scholar

  • LEACH, A. R., HANN, M. M. The in silico world of virtual libraries. Drug Discov. Today 2000, 5, 326-336.PubMedCrossrefGoogle Scholar

  • LEE, J. S., KANG, N. Y., KIM, Y. K., SAMANTA, A., FENG, S., KIM, H.K., VENDRELL, M., PARK, J.H., CHANG, Y.T.: Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J. Am. Chem. Soc., 131, 2009, 10077-10082.Google Scholar

  • LEE, J. S., KIM, H. K., FENG, S., VENDRELL, M., CHANG, Y-T.: Accelerating fluorescent sensor discovery: unbiased screening of a diversity-oriented BODIPY library. Chem. Commun., 47, 2011, 2339−2341.CrossrefGoogle Scholar

  • LEVIN, A. M., WEISS, G. A.: Optimizing the affinity and specificity of proteins with molecular display. Mol. Bio. Syst., 2, 2006, 49-57.Google Scholar

  • LOPEZ, M. F.: Better approaches to finding the needle in a haystack: Optimizing proteome analysis through automation. Electrophoresis, 21, 2000, 1082-1093.CrossrefGoogle Scholar

  • LOUDET, A., BURGESS, K.: BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev., 107, 2007, 4891-4932. CrossrefPubMedGoogle Scholar

  • MA, B., KUMAR, S., TSAI, C. J., NUSSINOV, R.: Folding funnels and binding mechanisms. Protein Eng., 12, 1999, 713-720.CrossrefPubMedGoogle Scholar

  • MAIER, W., STOEWE, K., SIEG, S.: Combinatorial and high-throughput materials science. Angew. Chem., Int. Ed., 46, 2007, 6016-6067.CrossrefGoogle Scholar

  • MARINO, M., CAMPANILE, M. N., IPPOLITO, A., SCARALLO, A., RUVO, M., FASSINA, G.: Structurally constrained selective ligands for mouse immunoglobulins. In: S. BAJUSZ and F. HUDECZ, Eds. Peptides 98, Academia Kiado, Budapest, 1999, 776-777.Google Scholar

  • MARINO, M., RUVO, M., DE FALCO, S., FASSINA, G.: Prevention of systemic lupus erythematosus in MRL/lpr mice by administration of an immunoglobulinbinding peptide. Nat. Biotechnol., 18, 2000, 735-739.Google Scholar

  • MCINNES, C.: Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol., 11, 2007, 494-502.PubMedCrossrefGoogle Scholar

  • MENEGATTI, S., WARD, K. L., NAIK, A. D., KISH, W. S., BLACKBURN, R. K., CARBONELL, R. G.: Reversible cyclic peptide libraries for the discovery of affinity ligands. Anal. Chem., 85, 2013, 9229-9237.CrossrefPubMedGoogle Scholar

  • MERRITT A.: High throughput chemistry in drug discovery. RSC Drug Discovery Series, 2012, 11 (New synthetic technologies in medicinal chemistry), 6-41.Google Scholar

  • MORTIER, J., RAKERS, C., FREDERICK, R., WOLBER, G.: Computational tools for in silico fragment-based drug design. Curr. Top. Med. Chem., 12, 2012, 1935-1943.CrossrefPubMedGoogle Scholar

  • NAIK, A. D., MENEGATTI, S., GURGEL, P. V., CARBONELL, R. G.: Performance of hexamer peptide ligands for affinity purification of immunoglobulin G from commercial cell culture media. J. Chromatogr. A, 1218, 2011, 1691-700.Google Scholar

  • NIXON, A.E.: Phage Display as a Tool for Protease Ligand Discovery. Curr. Pharm. Biotechnol., 3, 2002, 1-12.PubMedGoogle Scholar

  • NOPPE, W., PLIEVA, F. M., GALAEV, I. Y., VANHOORELBEKE, K., MATTIASSON, B., DECKMYN, H.: Immobilised peptide displaying phages as affinity ligands: Purification of lactoferrin from defatted milk. J. Chromatogr. A, 1101, 2006, 79-85.Google Scholar

  • OPREA, T. I.: Current trends in lead discovery: are we looking forthe appropriate properties? J. Comput. Aided Mol. Des., 16, 2002, 371-380.Google Scholar

  • PALOMBO, G., ROSSI, M., CASSANI, G., FASSINA, G.: Affinity purification of mouse monoclonal IgE using a protein A mimetic ligand (TG19318) immobilized on solid supports. J. Mol. Recognit., 11, 1998, 247-249.Google Scholar

  • RASMUSSEN, U. B., SCHREIBER, V., SCHULTZ, H., MISCHLER, F., SCHUGHART, K.:Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther., 9, 2002, 606-612.Google Scholar

  • ROLLINGER, J. M., STUPPNER, H., LANGER, T.: Virtual screening for the discovery of bioactive natural products. Prog. Drug Res., 65, 2008, 213-249.Google Scholar

  • ROSE, S., STEVENS, A.: Computational design strategies for combinatorial libraries. Curr. Opin. Chem. Biol., 7, 2003, 331-339.PubMedCrossrefGoogle Scholar

  • RUNGROTMONGKOL, T., FRECER, V., DE-EKNAMKUL, W., HANNONGBUA, S., MIERTUS, S.: Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antivir. Res., 82, 2009, 51-58. CrossrefGoogle Scholar

  • RUPASINGHE, C. N., SPALLER, M. R.: The interplay between structure-based design and combinatorial chemistry. Curr. Opin. Chem. Biol., 10, 2006, 188-193.PubMedCrossrefGoogle Scholar

  • RUVO, M., SCARDINO, P., CASSANI, G., FASSINA, G.: Facile manual synthesis of peptide libraries. Protein Pept. Lett., 1, 1994, 187-192.Google Scholar

  • SANCINETO, L., MASSARI, S., IRACI, N., TABARRINI, O.: From small to powerful: the fragments universe and its "chem-appeal". Curr. Med. Chem., 20, 2013, 1355-1381.CrossrefGoogle Scholar

  • SHERMAN, W., BEARD, H. S., FARID, R.: Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des., 67, 2006, 83-84.PubMedCrossrefGoogle Scholar

  • SINKO, W., LINDERT, S., MCCAMMON, A. J.: Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem. Biol. Drug. Des., 81, 2013, 41-49.PubMedCrossrefGoogle Scholar

  • SMITH, G. P., PETRENKO, V. A.: Phage display. Chem. Rev., 97, 1997, 391-410.CrossrefPubMedGoogle Scholar

  • SMITH, G. P.: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1985, 1315-1317.Google Scholar

  • STEMBERG, N., HOESS, R. H.: Display of peptides and proteins on the surface of bacteriophage lambda. Proc. Nat. Acad. Sci. USA, 92, 1995, 1609-1613.CrossrefGoogle Scholar

  • STERNSON, S. M., WONG, J. C., GROZINGER, C. M., SCHREIBER, S. L.: Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org. Lett., 3, 2001, 4239-4242.PubMedCrossrefGoogle Scholar

  • STRATMANN, J., STROMMENGER, B., STEVENSON, K., GERLACH, G. F.: Development of a peptide-mediated capture PCR for detection of Mycobacterium avium subsp. paratuberculosis in milk. J. Clin Microb., 40, 2002, 4244-4250.CrossrefGoogle Scholar

  • TAM, J. P.: Synthetic peptide vaccine design: synthesis and properties of a highdensity multiple antigenic peptide system. Proc. Natl. Acad. Sci. USA, 85, 1988, 5409-5413.CrossrefGoogle Scholar

  • TANAKA, F.: Catalytic antibodies as designer proteases and esterases. Chem. Rev., 102, 2002, 4885-4905.PubMedCrossrefGoogle Scholar

  • TIAM, F., TSAO, M. L., SCHULTZ, P. G.: A phage display system with unnatural amino acids. J. Am. Chem. Soc., 126, 2004, 15962-15963.Google Scholar

  • TINOCO, L. W., DA SILVA, J. R. A., LEITE, A., VALENTE, A.P., ALMEIDA, F.C.: NMR structure of PW2 bound to SDS micelles. A tryptophan-rich anticoccidial peptide selected from phage display libraries. J. Biol Chem., 277, 2002, 36351-36356.Google Scholar

  • TSUJI, N., KOBAYASHI, M., NAGASHIMA, K., WAKISAKA, Y., KOIZUMI, K.: A new antifungal antibiotic, trichostatin. J. Antibiot., 29, 1976, 1-6.CrossrefGoogle Scholar

  • UGI, I., GOEBEL, M., GRUBER, B., HEILINGBRUNNER, M., HEIß, C., HÖRL, W., KERN, O., STARNECKER, M., DÖMLING A.: Molecular libraries in liquid phase via Ugi-MCR. Res. Chem. Interm., 22, 1996, 625-644.CrossrefGoogle Scholar

  • VAZQUEZ-ROMERO, A., KIELLAND, N., ARÉVALO, M. J., PRECIADO, S., MELLANBY, R.J., FENG, Y., LAVILLA, R., VENDRELL, M.: Multicomponent reactions for de novo synthesis of BODIPY probes: In vivo imaging of phagocytic macrophages. J. Am. Chem. Soc., 135, 2013, 16018−16021.Google Scholar

  • VENDRELL, M., KRISHNA, G. G., GHOSH, K. K., ZHAI, D., LEE, J.S., ZHU, Q., YAU, Y.H., SHOCHAT, S.G., KIM, H., CHUNG, J., CHANG, Y.T.: Solid-phase synthesis of BODIPY dyes and development of an immunoglobulin fluorescent sensor. Chem. Commun., 47, 2011, 8424−8426.CrossrefGoogle Scholar

  • VERDOLIVA, A., BASILE, G., FASSINA, G.: Affinity purification of immunoglobulins from chicken egg yolk using a new synthetic ligand. J. Chromat. B, 749, 2000, 233-242.Google Scholar

  • VILLAR, H. O., YAN, J., HANSEN, M. R.: Using NMR for ligand discovery and optimization. Curr. Opin. Chem. Biol., 8, 2004, 387-391.CrossrefPubMedGoogle Scholar

  • WOLBER, G., LANGER, T.: CombiGen: A novel software package for the rapid generation of virtual combinatorial libraries. In: HÖLTJE, H. D., SIPPL, W., Eds., Rational Approaches to Drug Design, Prous Science, Barcelona, Spain, 2001, pp. 390-399.Google Scholar

  • WONG, J. C., HONG, R., SCHREIBER, S. L.: Structural biasing elements for in-cell histone deacetylase paralog selectivity. J. Am. Chem. Soc., 125, 2003, 5586-5587.CrossrefGoogle Scholar

  • WOO, L. K.: Combinatorial approaches and molecular evolution of homogeneous catalysts . In: NARASIMHAN, B., MALLAPRAGADA, S. K., PORTER, M. D., Eds. Combinatorial materials science. John Wiley and Sons, Hoboken, 2007, 121-162.Google Scholar

  • ZHAI, D., LEE, S. C., VENDRELL, M., LEONG, L.P., CHANG, Y-T.: Synthesis of a novel BODIPY library and its application in the discovery of a fructose sensor. ACS Combi. Science, 14, 2012, 81-84.Google Scholar

  • ZHOU, J. Z.: Structure-directed combinatorial library design. Curr. Opin. Chem. Biol., 12, 2008, 379-385. PubMedCrossrefGoogle Scholar

About the article

Published Online: 2015-02-06

Published in Print: 2014-12-01

Citation Information: Nova Biotechnologica et Chimica, Volume 13, Issue 2, Pages 87–108, ISSN (Online) 1338-6905, DOI: https://doi.org/10.1515/nbec-2015-0001.

Export Citation

© by Pierfausto Seneci. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in