Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
Online
ISSN
1338-6905
See all formats and pricing
More options …

Natural Organic Matter in Ecosystems - a Review

Przemysław Kosobucki
  • Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87 – 100 Toruń, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogusław Buszewski
  • Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87 – 100 Toruń, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/nbec-2015-0002

Abstract

One of the most essential parameters limiting the potential use of the ecosystem (soil, water) is the content of the organic matter. The natural organic matter (NOM) is a ubiquitous component of the lithosphere and hydrosphere that constitutes one of the largest reservoirs of the carbon in the environment. Natural organic substances play several important functions in ecosystems and they are necessary for their normal functioning. Despite many years of the research and using many advanced analytical techniques, their structure has not been fully explained. The main aim of this review is to present the actual state of the knowledge about the natural organic matter and provide a comprehensive overview of the research that has explored up to date in this matter. The additional attention was focused on the relations within and between humic and fulvic acids in terrestrial and aquatic environments. Special attention is focused on the analytical methods used to analysis natural organic matter

Keywords : natural organic matter; humic acids; fulvic acids; humins; ecosystem; ecoanalytics

References

  • ABRAMOV, E.G., BEZZUBOV, A.A.: Electrosorptive separation of humic substances. J. Water Chem. Technol., 29, 2007, 125-130.CrossrefGoogle Scholar

  • ANDRÉ, C., GUILLAUME, Y.C.: CEC for Studying the Retention and Separation of Pesticides on a Humic Acid Stationary Phase. Chromatographia, 68, 2008, 791-796.CrossrefGoogle Scholar

  • BAXTER, R.M., MALYSZ, J.: Analysis of aquatic humic material and high molecular weight components of bleached kraft mill effluent (BKME) by gradient gel electrophoresis. Chemosphere, 12, 1992, 1745-1753.CrossrefGoogle Scholar

  • BEZNOSIKOV, V.A., LODYGIN, E.D.: Characteristics of the structure of humic substances of podzolic and peaty podzolic gleyey soils. Russ. Agricult. Sci., 35, 2009, 103-105.CrossrefGoogle Scholar

  • CHAIKOVSKAYA, O.N., SOKOLOVA, I.V., SOKOLOVA, T.V., YUDINA, N.V., MAL’TSEV, E.V.: Effect of humic acids on phototransformation of methylphenols in water. J. App. Spectroscopy, 75, 2008, 597-602.Google Scholar

  • CHEFTEZ, B., HATCHER, P., HADAR, Y., CHEN, Y.: Chemical and biological characterization of organic matter during composting of MSW. J. Environ. Quality, 25, 1996, 776-785.CrossrefGoogle Scholar

  • CHEFTEZ, B., HATCHER, P., HADAR, Y., CHEN, Y.: Characterization of dissolved organic matter extracted from composted municipal waste. Soil Sci. Soc. American J., 62, 1998, 326-332.CrossrefGoogle Scholar

  • CHIN, Y.P., GSCHWEND, P.M.: The abundance, distribution, and configuration of porewater organic colloids in recent sediments. Geochim. Cosmochim. Acta, 55, 1991, 1309-1317.CrossrefGoogle Scholar

  • CHUNG, T.L., CHEN, J.S., CHIU, C.Y., TIAN, G.: 13C-NMR spectroscopy studies of humic substances in subtropical perhumid montane forest soil. J. Forest Res., 17, 2012, 458-467.CrossrefGoogle Scholar

  • CONETH, A., BLAIR, G.J., LEFROY, R., WHITBREAD, A.: Labile organic carbon determined by permanganate oxidation and its relationships to other measurements of soil organic carbon. Humic Sub. Environ., 1, 1999, 3-15.Google Scholar

  • CURVETTO, N.R., BALMACEDA, N.A., ORIOLI, G.A.: Isotachophoresis and isoelectric focusing of soil humic substances in polyacrylamide gel. J. Chromatography, 93, 1974, 248-253.CrossrefGoogle Scholar

  • DE MORAES, S.L., REZENDE, M.O.O.: Behavior of Humic Acid as a Micellar Phase in Micellar Electrokinetic Chromatography (MEKC). Microchim. Acta, 151, 2005, 115-122.Google Scholar

  • DIVYA, O., VENKATARAMAN, V., MISHRA, A.K.: Analysis of metal ion concentration in humic acid by excitation-emission matrix fluorescence and chemometric methods. J. App. Spectr., 76, 2009, 864-875.Google Scholar

  • DZIADOWIEC, H.: Ekologiczna rola próchnicy glebowej. Zesz. Prob. Post. Nauk Rol., 411, 1993, 269-282.Google Scholar

  • EFANOV, M.V., CHERNENKO, P.P.: Preparation of nitrogen-containing humic preparations from peat. Solid Fuel Chem., 44, 2010, 61-64.CrossrefGoogle Scholar

  • EPSTEIN, E.: The science of composting. Technomic Publishing Company, Inc. Lancaster, Pensylvania, 1997, 45-58.Google Scholar

  • FABRRI, D., VASSURA, I., SNAPE, C.E.: Simple off-line flash pyrolysis procedure with in situ silylation for the analysis of hydroxybenzenes in humic acids and coals. J. Chromatogr. A, 967, 2002, 235-242.Google Scholar

  • FOURTI, O., JEDIDI, N., HASSEN, A.: Humic substances change during the cocomposting process of municipal solid wastes and sewage sludge. World J. Microbiol. Biotechnol., 26, 2010, 2117-2122. , GONET, S.S.: Struktura substancji humusowych. Zesz. Prob. Post. Nauk Rol., 411, 1993, 189-194.CrossrefGoogle Scholar

  • GONET, S.S.: Próchnica, substancje humusowe, węgiel organiczny - definicje, komentarze i metody oznaczania. In: Substancje humusowe w glebach i nawozach. Problemy badań, Dębska B., Gonet S.S. (Eds.), PTSH Wrocław, 2003, 15-23.Google Scholar

  • GOSTISHCHEVA, M.V., BELOUSOV, M.V., YUSUBOV, M.S., ISMATOVA, R.R., DMITRUK, S.E.: Comparative IR spectral characteristics of humic acids from peats of different origin in the Tomsk area. Pharm. Chem. J., 43, 2009, 418-421.CrossrefGoogle Scholar

  • GU, B., LEBOEF, E.J., PAN, H., DAI, S.: Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48, 2002, 59-68.PubMedGoogle Scholar

  • HARVEY, G.R., BORAN, D.A., CHESAL, L.A., TOKAR, J.M.: The structure of Marine fulvic and humic acids. Marine Chem., 12, 1983, 119-132. HSU, J.H., LO, S.L.: Chemical and spectroscopic analysis of organic matter transformation during composting of pig manure. Environ. Poll., 104, 1993 189-196.Google Scholar

  • HUTTA, M., GORA, R.: Novel stepwise gradient reversed-phase liquid chromatography separations of humic substances, air particulate humic-like substances and lignins. J. Chromatogr., 1012, 2003, 67-79.Google Scholar

  • INBAR, Y., CHEN, Y., HADAR, Y.: Solid state carbon-13 nuclear magnetic resonance and infared spectroscopy of composted organic matter. Soil Sci. Soc. Am. J., 53, 1989, 1695-1701.CrossrefGoogle Scholar

  • INBAR, Y., HADAR, Y., CHEN, Y.: Recycling of cattle manure: the composting process and characterization of maturity. J. Environ. Qual., 22, 1993, 857-863.CrossrefGoogle Scholar

  • JONES, M.N., BRYAN, N.D.: Colloidal properties of humic substances. Adv. Coll. Interface Sci., 78, 1998, 1-48.CrossrefGoogle Scholar

  • KALEMBASA, S.J., JENKINSON, D.S.: A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J. Sci. Food Agr., 24, 1973, 1085-1090.CrossrefGoogle Scholar

  • KARLEN, D.L., DITZLER, C.A., ANDREWS, S.S.: Soil quality: why and how? Geoderma, 114, 2003, 145-156.CrossrefGoogle Scholar

  • KELLER, C., MACIEL, G.E.: 13C NMR spectral editing of humic material. J. Mol. Str., 550, 2000, 297-305.Google Scholar

  • KHIL’KO, S. L., EFIMOVA, I.V., SMIRNOVA, O.V.: Antioxidant properties of humic acids from brown coal. Solid Fuel Chem., 45, 2011, 367-371.CrossrefGoogle Scholar

  • KHIL’KO, S.L., KOVTUN, A.I., RYBACHENKO, V.I.: Potentiometric titration of humic acids. Solid Fuel Chem., 45, 2011, 337-348.CrossrefGoogle Scholar

  • KLAVINS, M., PURMALIS, O.: Humic substances as surfactants. Environ. Chem. Lett., 8, 2010, 349-354.CrossrefGoogle Scholar

  • KLUČÁKOVÁ, M.: Adsorption of nitrate on humic acids studied by flow-through coulometry. Environ. Chem. Lett., 8, 2010, 145-148.CrossrefGoogle Scholar

  • KLUČÁKOVÁ, M.,; KARGEROVÁ, A., NOVÁČKOVÁ, K.: Conformational changes in humic acids in aqueous solutions. Chem. Papers, 66, 2012, 875-880.Google Scholar

  • KONONOWA, M.: Substancje organiczne gleby, ich budowa, właściwości i metody badań. PWRiL, Warszawa, 1968, 88-97.Google Scholar

  • KOPACEK, P., KANIANSKY, D., HEJZLAR, J.: Characterization of humic substances by capillary isotachophoresis. J. Chromatogr. A, 2, 1991, 461-470.CrossrefGoogle Scholar

  • KÖRSCHENS, M., WEIGEL, A., SCHULZ, E.: Turnover of soil organic matter (SOM) and long-term balances - tools for evaluating sustainable productivity of soils. Zeit. Pflanzenernährung Bodenkunde, 161, 1998, 409-424.Google Scholar

  • KOSOBUCKI, P., BUSZEWSKI, B.: Bioakumulacja wybranych metali ciężkich przez rośliny hodowane na kompostach otrzymywanych na bazie komunalnych osadów ściekowych. Ekol. Technol., 14, 2006, 44-49.Google Scholar

  • KOSOBUCKI, P., BUSZEWSKI, B.: Carbon changes in environment. From total organic carbon to soil organic matter. Pol. J. Environ. Stud., 1, 2011, 9-14.Google Scholar

  • KOWALKOWSKI, T.: Characterization of natural organic colloids derived from sewage sludge. Pol. J. Environ. Stud., 2, 2010, 437-441.Google Scholar

  • KOWALKOWSKI, T., BUSZEWSKI, B.: Transport of Selected Heavy Metals in Sewage Sludge Composts and Sewage Sludge Amended Soil. Ars Separatoria, 5, 2001, 17-23. KOWALKOWSKI, T., BUSZEWSKI, B.: Soil reclamation by municipal sewage sludge compost: heavy metals transport study. J. Environ. Sci. Health A, 44, 2009, 522-527.Google Scholar

  • KUČERÍK, J., ČECHLOVSKÁ, H., BURSÁKOVÁ, P., PEKAŘ, M.: Lignite humic acids aggregates studied by high resolution ultrasonic spectroscopy. J. Thermal Anal. Cal., 96, 2009, 637-643.Google Scholar

  • KUČERÍK, J., KAMENÁŘOVÁ, D., VÁLKOVÁ, D.: The role of various compounds in humic acids stability studied by TG and DTA. J. Thermal Anal. Cal., 84, 2006, 715-720.Google Scholar

  • KULIKOV, N.A., PERMINOVA, I.V.: A comparative study of molecular weight distribution of water-soluble humic substances, humic acids, and fulvic acids extracted from sod-podzolic soils. Moscow Univ. Soil Sci. Bull., 65, 2010, 155-158.CrossrefGoogle Scholar

  • KULIKOVA, N.A., PERMINOVA, I.V.: A comparative study of elemental composition of water-soluble humic substances, humic acids, and fulvic acids extracted from sod-podzolic soils. Moscow Univ. Soil Sci. Bull., 65, 2010, 151-154.CrossrefGoogle Scholar

  • LAL, R.: Physical properties and moisture retention characteristics of some Nigerian soils. Geoderma, 21, 1979, 209-223.Google Scholar

  • LEENHER, J.A.: Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ. Sci. Technol., 15, 1981, 578-587.CrossrefGoogle Scholar

  • LEITA, L., DE NOBILI, M.: Water soluble fractions of heavy metals during composting of MSW. J. Environ. Qual., 20, 1991, 73-78.CrossrefGoogle Scholar

  • LEOPOLD, K., ZIERHUT, A., HUBER, J.: Ultra-trace determination of mercury in river waters after online UV digestion of humic matter. Anal. Bioanal. Chem., 403, 2012, 2419-2428.Google Scholar

  • LISHTVAN, I.I., YANUTA, Y.G., ABRAMETS, A.M., STRIGUTSKII, V.P., NAVOSHA, Y.Y.: Humic preparations from brown coal and peat and methods for their demineralization. Solid Fuel Chem., 47, 2013, 147-152.CrossrefGoogle Scholar

  • LODYGIN, E.D., BEZNOSIKOV, V.A., VASILEVICH, R.S.: Study of polydispersity of humic substances by the gel chromatography method. Russ. Agricult. Sci., 38, 2012, 293-296.CrossrefGoogle Scholar

  • LUCIO, M., SCHMITT-KOPPLIN P.: Modeling the binding of triazine herbicides to humic substances using capillary electrophoresis. Environ. Chem. Lett., 4, 2006, 15-21.CrossrefGoogle Scholar

  • LYNCH, J.M.: Ligninocelluloysis in compost. Environ. Technol. Lett., 9, 1986, 359-368.Google Scholar

  • MARYGANOVA, V.V., BAMBALOV, N.N., STRIGUTSKII, V.P., PARMON, S.V.: Changes in the composition of humic substances depending on the depth of peat occurrence. Solid Fuel Chem., 47, 2013, 153-164.CrossrefGoogle Scholar

  • MERRY, R.H., SPOUNCER, L.R.: The measurement of carbon in soils using a microprocessor-controlled resistance furnace. Comm. Soil Sci. Plant Anal., 19, 1988, 707-720.CrossrefGoogle Scholar

  • MOODY, P.W., YO, S.A., AITKEN, R.L.: Soil organic carbon, permanganate fractions, and the chemical properties of acidic soils. Austral. J. Soil Res., 35, 1997, 1301-1308. CrossrefGoogle Scholar

  • MOROS, J., HERBELLO-HERMELO, P., MOREDA-PIÑEIRO, A., BERMEJOBARRERA, P.: Screening of humic and fulvic acids in estuarine sediments by near-infrared spectrometry. Anal. Bioanal. Chem., 392, 2008, 541-549.Google Scholar

  • MOSKVIN, A.L., MOZZHUKHIN, A.V., MUKHINA, E.A., MOSKVIN, L.N.: Flowinjection photometric determination of the phenol Index of natural waters in the presence of humic acids. J. Anal. Chem., 60, 2005, 70-74.CrossrefGoogle Scholar

  • NAGYOVA, I., KANIANSKY, D.: Discrete spacers for photometric characterization of humic acids separated by capillary isotachophoresis. J. Chromatogr. A, 916, 2001, 191-200.Google Scholar

  • NISSEN, T.K., MIETTINEN, I.T., MARTIKAINEN, T.J., VARTIAINEN, T.: Molecular size distribution of natural organic matter in raw and drinking water. Chemosphere, 45, 2001, 865-873.CrossrefGoogle Scholar

  • PARE, T., DINEL, H., SCHNITZER, M., DUMONTET, S.: Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol. Fert. Soils, 26, 1998, 173-178.Google Scholar

  • PATRAKOV, Y.F., SCHASTLIVTSEV, E.L., MANDROV, G.A.: Characterization of brown coal humic and fulvic acids by IR spectroscopy. Solid Fuel Chem., 44, 2010, 293-298.CrossrefGoogle Scholar

  • PEURAVUORI, J., PIHLAJA, K.: Multi-method characterization of lake aquatic humic matter isolated with two different sorbing solids. Anal. Chim. Acta, 363, 1998, 235-247.Google Scholar

  • PICCOLO, A., SPITELLER, M., NEBBIOSO, A.: Effects of sample properties and mass spectroscopic parameters on electrospray ionization mass spectra of sizefractions from a soil humic acid. Anal. Bioanal. Chem., 397, 2010, 3071-3078.Google Scholar

  • PLAZA, C., BRUNETTI, G., SENESI, N., POLO, A.: Fluorescence characterization of metal ion-humic acid interactions in soils amended with composted municipal solid wastes. Anal. Bioanal. Chem., 386, 2007, 2133-2140.Google Scholar

  • POLIKRETI, K., CHRISTOFIDES, C.: The role of humic substances in the formation of marble patinas under soil burial conditions. Phys. Chem. Minerals, 36, 2009, 271-279.CrossrefGoogle Scholar

  • PROIDAKOV, A.G.: Humic acids from mechanically treated coals: A review. Solid Fuel Chem., 43, 2009, 9-14.CrossrefGoogle Scholar

  • PSHINKO, G.N.: Impact of humic matter on sorption of radionuclides by montmorrilonite. J. Water Chem. Technol., 31, 2009, 163-171.CrossrefGoogle Scholar

  • QI, G., YUE, D., NIE, Y.: Characterization of humic substances in bio-treated municipal solid waste landfill leachate. Front. Environ. Sci. Eng., 6, 2012, 711-716.CrossrefGoogle Scholar

  • QUENTEL, F., FILELLA, M.: A simple method for quantifying the humic content of commercial products. Anal. Bioanal. Chem., 401, 2011, 3235-3238.Google Scholar

  • RASMUSSEN, P.E., COLLINS, H.P.: Long-term impacts of tillage, fertilizer, and crop residue on soil organic matter in temperate semiarid regions. Adv. Agro., 45, 1991, 93-134.Google Scholar

  • ROTARU, A., NICOLAESCU, I., ROTARU, P., NEAGA, C.: Thermal characterization of humic acids and other components of raw coal. J. Therm. Anal. Cal., 92, 2008, 297-300. CrossrefGoogle Scholar

  • SAVEL’EVA, A.V., YUDINA, N.V., INISHEVA, L.I.: Composition of humic acids in peats with various degrees of humification. Solid Fuel Chem., 44, 2010, 305-309.CrossrefGoogle Scholar

  • SCHIAVON, M., PIZZEGHELLO, D., MUSCOLO, A., VACCARO, S., FRANCIOSO, O.: High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.). J. Chem. Ecol., 36, 2010, 662-669.CrossrefGoogle Scholar

  • SCHIMPF, M.E., WAHLUND, K.-G.: Asymmetrical Flow Field-Flow Fractionation as a Method to Study the Behavior of Humic Acids in Solution. J. Microcol. Sep., 7, 1997, 535-543.Google Scholar

  • SCHULTEN, H.R., PLAGE, B., SCHNITZER, M.: A chemical structure for humic substances. Naturwissen., 78, 1991, 311-322.CrossrefGoogle Scholar

  • SIVAKOVA, L.G., LESNIKOVA, N.P., KIM, N.M., ROTOVA, G.M.: Physicochemical properties of the humic substances of peat and brown coal. Solid Fuel Chem., 45, 2011, 1-6.CrossrefGoogle Scholar

  • SIYANITSA, V.V., KOCHKODAN, V.M., GONCHARUK, V.V.: Removal of humic compounds from aqueous solutions by the complexation-ultrafiltration method. J. Water Chem. Technol., 29, 2007, 131-135.CrossrefGoogle Scholar

  • SKJEMSTAD, J.O., TAYLOR, J.A.: Does the Walkley-Black method determine soil charcoal? Comm. Soil Sci. Plant Anal., 30, 1999, 2299-2310.CrossrefGoogle Scholar

  • STEINBERG, C.E.W.: Humic substances in the environment with an emphasis on freshwater systems. Environ. Sci. Poll. Res., 15, 2008, 15-16.CrossrefGoogle Scholar

  • STEPANOV, A.A.: Separation and characterization of amphiphilic humic acid fractions. Moscow Uni. Soil Sci. Bull., 3, 2008, 125-129.Google Scholar

  • STEVENSON, F.J.: Humus chemistry. Genesis, composition, reactions, 2nd edition. John Wiley and Sons, New York, 1994, 66-124.Google Scholar

  • SUN, W.L., NI, J.R., LIU, T.T.: Effect of Sediment Humic Substances on Sorption of Selected Endocrine Disruptors. Water, Air, Soil Poll., 6, 2006, 583-591.CrossrefGoogle Scholar

  • SZOMBATHOVA, N.: Comparision of soil carbon susceptibility to oxidation by KMnO4 in different farming systems in Slovakia. Humic Sub. Environ., 3-4, 1999, 35-39.Google Scholar

  • TAKAHASHI, T., KAWANA, J., HOSHINO, H.: Capillary electrophoretic separation of humic substances using hydroxyethyl cellulose as a buffer additive and its application to characterization of humic substances in a river water sample. Anal. Bioanal. Chem., 393, 2009, 761-766.Google Scholar

  • THIEME, J., NIEMEYER, J.: Interaction of colloidal soil particles, humic substances and cationic detergents studied by X-ray microscopy. Prog. Coll. Pol. Sci., 111, 1998, 193-201.CrossrefGoogle Scholar

  • VEEKEN, A., NIEROP, K., DE WILDE, V., HAMELERS, B.: Characterization of NaOH-extracted humic acids during composting of a biowaste. Bioresour. Technol., 72, 2000, 33-41.CrossrefGoogle Scholar

  • VEPRIKOVA, E.V., RUDKOVSKII, A.V., SHCHIPKO, M.L.: Removal of humic substances from water by brown coal sorbents. Solid Fuel Chem., 41, 2007, 359-363.CrossrefGoogle Scholar

  • WAKSMAN, S.A.: Humus. Wiliams and Wilkins, Baltimore, MD 1936. YARKOVA, T.A., GYUL’MALIEV, A.M.: Average structural model of humic acids of peat origin. Solid Fuel Chem., 46, 2012, 279-281.Google Scholar

  • YOHANNES, G., WIEDMER, S.K., JUSSILA, M., RIEKKOLA, M.-L.: Fractionation of Humic Substances by Asymmetrical Flow Field-Flow Fractionation. Chromatographia, 61, 2005, 359-364.CrossrefGoogle Scholar

  • ZAV’YALOVA, N.E.: Investigation of optical properties of humic acids of sodpodzolic soil. Russ. Agricult. Sci., 38, 2012, 386-388.CrossrefGoogle Scholar

  • ZBYTNIEWSKI, R., BUSZEWSKI, B.: Characterization of Natural Organic Matter (NOM) Derived from Sewage Sludge Compost. Part 1, Chemical and Spectroscopic properties. Bioresour. Technol., 4, 2005, 471-478.CrossrefGoogle Scholar

  • ZBYTNIEWSKI, R., BUSZEWSKI, B.: Characterization of Natural Organic Matter (NOM) Derived from Sewage Sludge Compost. Part 2, Multivariate Techniques In the Study of Compost Maturation. Bioresour. Technol., 4, 2005, 479-484.CrossrefGoogle Scholar

  • ZBYTNIEWSKI, R., KOSOBUCKI, P., KOWALKOWSKI, T., BUSZEWSKI, B.: The comparison study of compost and natural organic matter samples. Environ. Sci. Poll. Res., 1, 2002, 68-74.Google Scholar

  • ZOMEREN, A., WEIJ-ZUIVER, E., COMANS, R.N.J.: Development of an automated system for isolation and purification of humic substances. Anal. Bioanal. Chem., 381, 2008, 2365-2370 Google Scholar

About the article

Published Online: 2015-02-06

Published in Print: 2014-12-01


Citation Information: Nova Biotechnologica et Chimica, ISSN (Online) 1338-6905, DOI: https://doi.org/10.1515/nbec-2015-0002.

Export Citation

© by Przemysław Kosobucki. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in