Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
Online
ISSN
1338-6905
See all formats and pricing
More options …

The Response of Artificial Aging to Sorption Properties of Biochar for Potentially Toxic Heavy Metals

Vladimír Frišták / Wolfgang Friesl-Hanl
  • Department of Health & Environment, AIT Austrian Institute of Technology GmbH, Tulln, 3430, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Pipíška
  • Department of Ecochemistry and Radioecology, University of SS. Cyril and Methodius, J. Herdu 2, Trnava, SK-917 01, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbora Richveisová Micháleková
  • Department of Ecochemistry and Radioecology, University of SS. Cyril and Methodius, J. Herdu 2, Trnava, SK-917 01, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerhard Soja
  • Department of Health & Environment, AIT Austrian Institute of Technology GmbH, Tulln, 3430, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/nbec-2015-0004

Abstract

This paper evaluates the effect of simulated conditions of artificial aging on sorption capacity of two types of biochar. These were produced by slow pyrolysis from different feedstock - beech wood chips (BC A) and garden green waste residues (BC B). Cadmium served as a model for potentially toxic metals. Twenty freeze-thaw cycles were used to simulate physical aging. The determination of biochar physicochemical properties showed main changes in CEC and SA values of aged sorbents. The maximum sorption capacities of aged BC A sorbent were higher by about 26 % and aged BC B sorbent by about 20% compared to Qmax of non-aged biochar. Qmax of aged BC B peaked at 9.4 mg g-1 whereas BC A sorbed significantly less Cd. FT-IR analyses confirmed the changes in structural composition and content of functional groups on biochar surfaces. The artificial physical aging model was assessed as an efficient tool for investigation of natural weathering conditions.

Keywords : biochar; artificial aging; sorption; cadmium

References

  • CHMIELEWSKA, E., HODOSSYOVÁ, R., BUJDOŠ, M.: Kinetic and thermodynamic studies for phosphate removal using natural adsorption materials. Pol. J. Environ. Stud., 22, 2013, 1307-1316.Google Scholar

  • FRIESL-HANL, W., PLATZER, K., HORAK, O., GERZABEK, M. H.: Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environ. Geochem. Health, 31, 2009, 581-594.Web of ScienceGoogle Scholar

  • FRIŠTÁK, V., PIPÍŠKA, M., HORNÍK, M., AUGUSTÍN, J., LESNÝ, J.: Sludge of wastewater treatment plants as Co2+ ions adsorbent. Chem. Pap., 67, 2013, 265-273.Google Scholar

  • FRIŠTÁK, V., PIPÍŠKA, M., VALOVČIAKOVÁ, M., LESNÝ, J., ROZLOŽNÍK, M.: Monitoring 60Co activity for the characterization of the sorption process of Co2+ ions in municipal activated sludge. J. Radioanal. Nucl. Ch., 299, 2014a, 1607-1614.Web of ScienceGoogle Scholar

  • FRIŠTÁK, V., PIPÍŠKA, M., NOVÁKOVÁ, M., LESNÝ, J., PACKOVÁ, A.: Sorption separation of cadmium from aqueous solutions by alginate material: kinetic and equilibrium study. Desalin. Water Treat., 2014b, DOI 10.1080/19443994.2014.935811.CrossrefGoogle Scholar

  • FRIŠTÁK, V., PIPÍŠKA, M., LESNÝ, J., SOJA, G., FRIESL-HANL, W., PACKOVÁ, A.: Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ. Monit. Assess., 187, 2015, 4093.Web of ScienceGoogle Scholar

  • HALE, S.E., HANLEY, K., LEHMANN, J., ZIMMERMAN, A.R., CORNELISSEN, G.: Effects of chemical, biological and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ. Sci. Technol., 45, 2011, 10445-10453.Google Scholar

  • KADUKOVÁ, J., HORVÁTHOVÁ, H.: Biosorption of copper, zinc and nickel from multi-ion solutions. Nova Biotechnol. Chim., 11, 2012, 125-132.Google Scholar

  • KARER, J., WIMMER; B., ZEHETNER, F., KLOSS, S., SOJA, G.: Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agr. Food. Sci., 22, 2013, 390-403.Google Scholar

  • KLOSS, S., ZEHETNER, F., DELLANTONIO, A., HAMID, R., OTTNER, F., LIEDTKE, V., SCHAWANNINGER M., GERZABEK, M.H., SOJA, G.: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual., 41, 2012, 990-1000.Web of ScienceGoogle Scholar

  • KLOSS, S., ZEHETNER, F., OBURGER, E., BUECKER, J., KITZLER, B., WENZEL, W.W., WIMMER, B., SOJA, G.: Trace element concentration in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soil. Sci. Total Environ., 481, 2014, 498-508.Web of ScienceGoogle Scholar

  • LAIR, G.J., GERZABEK, M.H., HABERHAUER, G., JAKUSCH, M., KIRCHMANN, H.: Response of the sorption behavior of Cu, Cd, and Zn to different soil management. J. Plant Nutr. Soil Sci., 169, 2006, 60-68.Google Scholar

  • LEHMANN, J., JOSEPH, S.: Biochar for environmental management: science and technology, Earthscan/James James, 2009.Google Scholar

  • LEHRSCH, G.A: Freeze-thaw cycles increase near-surface aggregate stability. Soil. Sci., 163, 1998, 63-70.Google Scholar

  • LU, H., ZHANG, W., YANG, Y., HUANG, X., WANG, S., QIU, R.: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res., 46, 2012, 854-862.Web of ScienceGoogle Scholar

  • MELICHOVÁ, Z., HROMADA, L.: Adsorption of Pb2+ and Cu2+ ions from aqueous solutions on natural bentonite. Pol. J. Environ. Stud., 22, 2012, 457-464.Google Scholar

  • MI, F.L., WU, S.J., LIN, F.M.: Adsorption of copper (II) ions by chitosan-oxalate complex biosorbent. Int. J. Biol. Macromol., 72, 2015, 136-144.Web of ScienceGoogle Scholar

  • O’CONNELL, D.W., BIRKINSHAW, C., O’DWYER, T.F.: Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol., 99, 2008, 6709-6724.Web of ScienceGoogle Scholar

  • OECD-Guideline 106: OECD Guideline for the testing of chemicals. Adsorption- Desorption using a batch equilibrium method. Organisation for Economic Cooperation and Development (OECD), Paris, 2001.Google Scholar

  • PIPÍŠKA, M., HORNÍK, M., REMENÁROVÁ, L., AUGUSTÍN, J., LESNý, J.: Biosorption of cadmium, cobalt and zinc by moss Rhytidiadelphus squarrosus in the single and binary component system. Acta Chim. Slov., 57, 2010, 163-172.Google Scholar

  • PROMMER, J., WANEK, W., HOFHANSL, F., TROJAN, D., OFFRE, P., ULRICH T., SCHLEPER, C., SASSMANN S., KITZLER, B., SOJA, G., HOODNOWOTNY, R.C.: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLOS ONE 9, e86388, 2014, DOI 10.1371/journal.pone.0086388.Web of ScienceGoogle Scholar

  • REMENÁROVÁ, L., PIPÍŠKA, M., FLORKOVÁ, E., HORNÍK, M., ROZLOŽNÍK, M., AUGUSTÍN, J.: Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol. Environ. Policy, 16, 2014, 1551-1564.Web of ScienceGoogle Scholar

  • ŠTEFUŠOVÁ, K., LOVÁS, M., ZUBRIK, A., MATIK, M., VÁCLAVÍKOVÁ, M.: Removal of Cd2+ and Pb2+ from aqueous solutions using bio-char residues. Nova Biotechnol. Chim., 11, 2012, 139-146.Google Scholar

  • WANG; G.P., LIU; J.S., ZHAO, H.Y., WANG, J.D., YU, J.B.: Phosphorus sorption by freeze-thaw treated wetland soils derived from a winter-cold zone (Sanjiang Plain, Northeast China). Geoderma, 138, 2007, 153-161.Web of ScienceGoogle Scholar

  • XIONG, CH., LI, Y., WANG, G., FANG, L., ZHOU, S., YAO, C., CHEN, Q., ZHENG, X., QI, D., FU, Y., ZHU, Y.: Selective removal of Hg (II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole chelating resin: Batch and column study. Chem. Eng. J., 259, 2015, 257-265.Web of ScienceGoogle Scholar

  • YAO, F.X., ARBESTAIN, M.C., VIRGEL, S., BLANCO, F., AROSTEGUI, J., MACIÁ-AGULLO, J.A., MACIAS, F.; Simulated geochemical weathering of amineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere, 80, 2010, 724-732.Web of ScienceGoogle Scholar

  • ZHAO, Q., XING, B., TAI, P., LI, H., SONG, L., ZHANG, L., LI, P.: Effect of freezethawing cycles on soil aging behavior of individually spked phenanthrene and pyrene at different concentrations. Sci. Total Environ., 444, 2013, 311-319. Web of ScienceGoogle Scholar

About the article

Published Online: 2015-02-06

Published in Print: 2014-12-01


Citation Information: Nova Biotechnologica et Chimica, ISSN (Online) 1338-6905, DOI: https://doi.org/10.1515/nbec-2015-0004.

Export Citation

© by Vladimír Frišták. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Isabel Hilber, Ana Catarina Bastos, Susana Loureiro, Gerhard Soja, Aleksandra Marsz, Gerard Cornelissen, and Thomas D. Bucheli
Journal of Environmental Engineering and Landscape Management, 2017, Volume 25, Number 2, Page 86
[2]
Barbora Micháleková-Richveisová, Vladimír Frišták, Martin Pipíška, Libor Ďuriška, Eduardo Moreno-Jimenez, and Gerhard Soja
Environmental Science and Pollution Research, 2017, Volume 24, Number 1, Page 463

Comments (0)

Please log in or register to comment.
Log in