Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
Online
ISSN
1338-6905
See all formats and pricing
More options …

HPLC Enantioseparation of Phenylcarbamic Acid Derivatives by Using Macrocyclic Chiral Stationary Phases

Katarína Hroboňová
  • Corresponding author
  • Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Lehotay
  • Faculty of Natural Sciences, University of ss.Cyril and Methodius, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Čižmárik
  • Comenius University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-04 | DOI: https://doi.org/10.1515/nbec-2016-0002

Abstract

The HPLC by using chiral stationary phases based on macrocyclic antibiotics, dimethylphenyl carbamate cyklofructan 7 and β-cyclodextrin in terms of polar-organic separation mode (mobile phase methanol/acetonitrile/acetic acid/triethylamine) were used for enantioseparation of alkoxy derivatives of phenylcarbamic acid. The effect of the analyte structures on the efficiency of enantioseparation was investigated. The most suitable stationary phase was teicoplanin aglycone, where the separations of the enantiomers were obtained (the resolution value from 0.65 to 2.90, depending on the structure of the analyte). Significant effect on the resolution of the enantiomers has position of alkoxy substituent in the hydrophobic part of the molecule. The enantiorecognition was achieved for 3-alkoxysubstituted derivatives.

Keywords: HPLC; chiral stationary phase; structure of the analyte; esters of phenylcarbamic acid

References

  • BEESLEY, T.E.: Review of Chiral stationary phase development and chiral applications. LC/GC Europe, 24, 2011, 270-276.Google Scholar

  • BÚČIOVÁ, Ľ., BOROVANSKÝ, A., ČIŽMÁRIK, J., CSÖLLEI, J., ŠVEC, P., KOZLOVSKÝ, J., RAČANSKÁ, E., BENEŠ, L.: Štúdium lokálnych anestetík. LXXXIX. Štúdium vplyvu obmien v spojovacom reťazci na biologickú aktivitu v skupine bázických fenylkarbamátov. Českoslov. Farm., 36, 1987, 339-344.Google Scholar

  • BÚČIOVÁ, Ľ., CSŐLLEI, J., BOROVANSKÝ, A., ČIŽMÁRIK, J., RAČANSKÁ, E.: Štúdium lokálnych anestetík. XCVII. Príprava a účinnosť 1-etoxymetyl-2-/1- pyrolidinyl/, 2-piperidino- a 2-/1-perhydroazepinyl/-etylesterov kyseliny o- a malko- xyfenylkarbámovej. Českoslov. Farm., 40, 1991, 102-105.Google Scholar

  • BUČIOVÁ, L., CSÖLEI, J., RAČANSKÁ, E., ŠVEC, P.: Investigations on local anaesthetics, IC1: Syntheses and local anaesthetic properties of alkoxyphenylcarbamates. Arch. Pharm. (Weinheim), 325, 1992, 393-396.Google Scholar

  • COHEN, J.L.: Profiles drug substances (London) 6, 1977.Google Scholar

  • ČIŽMÁRIK, J., LEHOTAY, J., HROMUĽÁKOVÁ, K., POKORNÁ, M., LACUŠKA, M.: HPLC separation of enantiomers of carbisocaine. Pharmazie, 52, 1997, 402-403.Google Scholar

  • HERMANSSON, J., GRAHN, A.: Optimization of the separation of the enantiomers of basic drugs. Retention mechanism and dinamic modification of the chiral bonding properties on an α- acid glicoprotein column. J. Chromatogr. A, 694, 1995, 57-69.Google Scholar

  • HROBOŇOVÁ, K., LEHOTAY, J., ČIŽMÁRIK, J., ARMSTRONG, D.W.: In vitro study of enzymatic hydrolysis of diperodon enantiomers in blood serum by twodimensional LC. J. Pharm. Biomed. Anal., 30, 2002a, 875-880.CrossrefGoogle Scholar

  • HROBOŇOVÁ, K., LEHOTAY, J., ČIŽMÁRIK, J., RENČOVÁ, M., ARMSTRONG, D.W.: Study of mechanism of enantioseparation II. HPLC chiral analysis of alkoxysubstututed esters of phenylcarbamic acid. J. Liq. Chromatogr. & Rel. Technol., 25, 2002b, 1711-1720.CrossrefGoogle Scholar

  • HROBOŇOVÁ, K., LEHOTAY, J., ČIŽMÁRIK, J.: Study of mechanism of enantioseparations. Part V. HPLC Chiral analysis of alkoxysubstituted esters of phenylcarbamic acid on β-cyclodextrin stationary phase. Chemia Analyticzna (Warsaw), 48, 2003, 473-482.Google Scholar

  • KOPECKÝ, F., VOJTEKOVÁ, M., VRANA, M., ČÍŽOVÁ, K.: Potentiometric study of carbisocaine micellization and inclusion complexation with α-cyclodextrin, β- cyclodextrin, methyl-β-cyclodextrin, and (hydroxypropyl)-β-cyclodextrin. Collect. Czech. Chem. Commun., 67, 2002, 245-256.Google Scholar

  • LÄMMERHOFER, M.: Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. Review. J. Chromatogr. A, 1217/6, 2010, 814-856.Google Scholar

  • MERIČKO, D., LEHOTAY, J., ČIŽMÁRIK J.: Vplyv zloženia mobilnej fázy na separáciu a termodynamické parametre enantioseparácie chirálnych sulfoxidov pri použití chirálnej stacionárnej fazy CHIROBIOTIC TAG. Farm. Obzor., 77, 2008, 167-176.Google Scholar

  • PENG, L., JAYAPALAN, S., CHANKVETADZE, B., FARKAS, T.: Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. J. Chromatogr. A, 1217, 2010, 6942-6955.Google Scholar

  • ROJKOVIČOVÁ, T., LEHOTAY, J., ČIŽMÁRIK J.: Vplyv sacharidových častí v teikoplanínovej stacionárnej fáze na separáciu niektorých enantiomérov fenylkarbámového typu metódou HPLC, Čes. Slov. Farm., 52, 2003, 97-101.Google Scholar

  • ROJKOVIČOVÁ, T., LEHOTAY, J., ČIŽMÁRIK, J.: HPLC separácia racemátov bázických esterov alkoxyfenylkarbámovej kyseliny použitím dvoch teikoplanínových chirálnych stacionárnych fáz, Čes. Slov. Farm., 54, 2005, 173-177.Google Scholar

  • RUSTICHELLI, C., FERIOLI, V., GAMBERINI, G., STANCANELLI, R.: Enantiomeric separation of local anaesthetic drug by HPLC on chiral stationary phases. Chromatographia, 54, 2001, 731-736.CrossrefGoogle Scholar

  • SUN, P., WANG, C., BREITBACH, Z.S., ZHANG, Y., ARMSTRONG, D.W.: Development of new HPLC chiral stationary phases based on native and derivatized cyclofructans. Anal. Chem., 81/24, 2009, 10215-10226.Web of ScienceGoogle Scholar

  • ZANG, T., KIENTZY, C., FRANCO, P., OHNISHI, A., KAGAHIMARA, Y., KUROSAVA, H.: Solvent versatility of immobilized 3,5- dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A, 1075, 2005, 65-75.Google Scholar

  • ZHANG, X.X., BRADSHAW, J.S., IZATT, R.M.: Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev., 97, 1997, 3313-3361.CrossrefGoogle Scholar

  • WANG, A.X., LEE, J.T., BEESLEY, T.E.: Coupling chiral stationary phases as a fast screening approach for HPLC method development. LC-GC, 18, 2000, 626-639.Google Scholar

About the article

Received: 2016-01-21

Accepted: 2016-04-19

Published Online: 2016-08-04

Published in Print: 2016-06-01


Citation Information: Nova Biotechnologica et Chimica, ISSN (Online) 1338-6905, DOI: https://doi.org/10.1515/nbec-2016-0002.

Export Citation

© by Katarína Hroboňová. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in