Jump to ContentJump to Main Navigation
Show Summary Details
More options …

NanoBioImaging

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3150
See all formats and pricing
More options …

Pathways to optical STED microscopy

Mathias P. Clausen
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvia Galiani
  • MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Nanophysics department, Instituto Italiano di Tecnologia, Genova, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Bernardino de la Serna
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Fritzsche
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jakub Chojnacki
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katja Gehmlich
  • Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Christoffer Lagerholm
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Eggeling
  • Corresponding author
  • MRC Human Immunology Unit and Wolfson Imaging CentreOxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-15 | DOI: https://doi.org/10.2478/nbi-2013-0001

Abstract

Optical far-field microscopy such as confocal fluorescence microscopy is a very popular technique for investigating the living cell. Unfortunately, its spatial resolution is limited to around 200 nm, impeding the imaging of small molecular assemblies. Recent decades have seen the development of optical nanoscopy, optical far-field microscopy with a spatial resolution down to molecular scales. STED microscopy was the first of such nanoscopy techniques. Despite the fact, that it in principle only requires the addition of a strong STED laser to a conventional microscope, STED nanoscopy was for a long time considered as a very complex technique, impossible to be applicable as a turn-key technique in everyday biological research. However, recent years has seen important improvements of the STED nanoscopy approach which have significantly simplified the setup. These developments mainly followed from optimization of fluorescent labels, laser technology and optical simplifications. As a result, STED microscopy setups have got more compact and have been realized on commercial instruments, allowing access to lessexperienced users in open imaging facilities. Here, we give a brief overview of the recent improvements in STED microscopy that made these important developments possible

Keywords: Fluorescence nanoscopy; super-resolution microscopy; STED microscopy

References

  • [1] Pawley, J. B. (2006) Handbook of biological confocal microscopy, 2nd ed., Springer, New York.Google Scholar

  • [2] Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischenWahrnehmung, Archiv für Mikroskopische Anatomie 9, 413-468.Google Scholar

  • [3] Hell, S. W. (2009) Microscopy and its focal switch, Nat Methods 6, 24-32.CrossrefGoogle Scholar

  • [4] Hell, S. W. (2003) Toward fluorescence nanoscopy, Nat Biotechnol 21, 1347-1355.CrossrefGoogle Scholar

  • [5] Hell, S. W., Dyba, M., and Jakobs, S. (2004) Concepts for nanoscale resolution in fluorescence microscopy, Curr Opin Neurobiol 14, 599-609.CrossrefGoogle Scholar

  • [6] Moerner, W. E. (2006) Single-molecule mountains yield nanoscale cell images, Nat Methods 3, 781-782.CrossrefGoogle Scholar

  • [7] Hell, S. W. (2007) Far-Field Optical Nanoscopy, Science 316, 1153-1158.CrossrefGoogle Scholar

  • [8] Heintzmann, R., and Ficz, G. (2007) Breaking the resolution limit in light microscopy, Methods Cell Biol 81, 561-580.CrossrefGoogle Scholar

  • [9] Rice, J. H. (2007) Beyond the diffraction limit: farfield fluorescence imaging with ultrahigh resolution, Mol Biosyst 3, 781-793.CrossrefGoogle Scholar

  • [10] Bates, M., Huang, B., and Zhuang, X. W. (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes, Curr Opin Chem Biol 12, 505-514.CrossrefGoogle Scholar

  • [11] Dedecker, P., Hofkens, J., and Hotta, J. I. (2008) Diffraction-unlimited optical microscopy, Materials Today 11, 12-21.CrossrefGoogle Scholar

  • [12] Fernandez-Suarez, M., and Ting, A. Y. (2008) Fluorescent probes for super-resolution imaging in living cells, Nat Rev Mol Cell Biol 9, 929-943.CrossrefGoogle Scholar

  • [13] Hell, S. (2009) Far-Field Optical Nanoscopy, In Single Molecule Spectroscopy in Chemistry (Gräslund, A., Rigler, R., Widengren, J., Ed.), pp 365 -398, Springer, Berlin.Google Scholar

  • [14] Evanko, D. (2009) Primer: fluorescence imaging under the diffraction limit, Nat Methods 6, 19-20.CrossrefGoogle Scholar

  • [15] Lippincott-Schwartz, J., and Manley, S. (2009) Putting super-resolution fluorescence microscopy to work, Nat Methods 6, 21-23.CrossrefGoogle Scholar

  • [16] Huang, B., Bates, M., and Zhuang, X. (2009) Superresolution fluorescence microscopy, Annual Reviews of Biochemistry 78, 993-1016.CrossrefGoogle Scholar

  • [17] Heilemann, M., Dedecker, P., Hofkens, J., and Sauer, M. (2009) Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification, Laser & Photon Rev 3, 180-202.CrossrefGoogle Scholar

  • [18] Heintzmann, R., and Gustafsson, M. G. L. (2009) Subdiffraction resolution in continuous samples, Nat Photonics 3, 362-364.CrossrefGoogle Scholar

  • [19] Chi, K. R. (2009) Super-resolution microscopy: breaking the limits, Nat Methods 6, 15-18.CrossrefGoogle Scholar

  • [20] Huang, B., Babcock, H., and Zhuang, X. (2010) Breaking the diffraction barrier: super-resolution imaging of cells, Cell 143, 1047-1058.CrossrefGoogle Scholar

  • [21] Huang, B. (2010) Super-resolution optical microscopy: multiple choices, Curr Opin Chem Biol 14, 10-14.CrossrefGoogle Scholar

  • [22] Patterson, G., Davidson, M., Manley, S., and Lippincott-Schwartz, J. (2010) Superresolution Imaging using Single-Molecule Localization, Annu Rev Phys Chem 61, 345-367.CrossrefGoogle Scholar

  • [23] Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., and Zhuang, X. (2011) Evaluation of fluorophores for optimal performance in localizationbased super-resolution imaging, Nat Methods 8, 1027-1036.CrossrefGoogle Scholar

  • [24] Muller, T., Schumann, C., and Kraegeloh, A. (2012) STED Microscopy and its Applications: New Insights into Cellular Processes on the Nanoscale, Chemphyschem 13, 1986-2000.CrossrefGoogle Scholar

  • [25] Eggeling, C., Willig, K. I., and Barrantes, F. J. (2013) STED microscopy of living cells - New frontiers in membrane and neurobiology, J Neurochem 126, 203-212.CrossrefGoogle Scholar

  • [26] Hell, S. W., and Wichmann, J. (1994) Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy, Opt Lett 19, 780-782.CrossrefGoogle Scholar

  • [27] Klar, T. A., and Hell, S. W. (1999) Subdiffraction resolution in far-field fluorescence microscopy, Opt Lett 24, 954-956.CrossrefGoogle Scholar

  • [28] Donnert, G., Keller, J., Medda, R., Andrei, M. A., Rizzoli, S. O., Lurmann, R., Jahn, R., Eggeling, C., and Hell, S. W. (2006) Macromolecular-scale resolution in biological fluorescence microscopy, PNAS 103, 11440-11445.CrossrefGoogle Scholar

  • [29] Leutenegger, M., Eggeling, C., and Hell, S. W. (2010) Analytical description of STED microscopy performance, Opt. Express 18, 26417.CrossrefGoogle Scholar

  • [30] Göttfert, F., Wurm, C. A., Mueller, V., Berning, S., Cordes, V. C., Honigmann, A., and Hell, S. W. (2013) Coaligned Dual-Channel STED Nanoscopy and Molecular Diffusion Analysis at 20 nm Resolution, Biophys J 105,, L01 - L03.CrossrefGoogle Scholar

  • [31] Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S., and Hell, S. W. (2006) Nanoscale resolution in GFP-based microscopy, Nat Methods 3, 721-723.CrossrefGoogle Scholar

  • [32] Hein, B., Willig, K. I., and Hell, S. W. (2008) Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell, PNAS 105, 14271-14276.CrossrefGoogle Scholar

  • [33] Dyba, M., and Hell, S. W. (2003) Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission, Appl Opt 42, 5123-5129.CrossrefGoogle Scholar

  • [34] Vicidomini, G., Moneron, G., Eggeling, C., Rittweger, E., and Hell, S. W. (2012) STED with wavelengths closer to the emission maximum, Opt Express 20, 5225-5236.CrossrefGoogle Scholar

  • [35] Schröder, J., Benink, H., Dyba, M., and Los, G. V. (2008) In Vivo Labeling Method Using a Genetic Construct for Nanoscale Resolution Microscopy, Biophys J 96, L1-L3.Google Scholar

  • [36] Fitzpatrick, J. A., Yan, Q., Sieber, J. J., Dyba, M., Schwarz, U., Szent-Gyorgyi, C., Woolford, C. A., Berget, P. B., Waggoner, A. S., and Bruchez, M. P. (2009) STED nanoscopy in living cells using fluorogen activating proteins, Bioconjug Chem 20, 1843-1847.CrossrefGoogle Scholar

  • [37] Morozova, K. S., Piatkevich, K. D., Gould, T. J., Zhang, J., Bewersdorf, J., and Verkhusha, V. V. (2010) Far-Red Fluorescent Protein Excitable with Red Lasers for Flow Cytometry and Superresolution STED Nanoscopy, Biophys J 99, L13-L15.Google Scholar

  • [38] Willig, K. I., Keller, J., Bossi, M., and Hell, S. W. (2006) STED microscopy resolves nanoparticle as- semblies, New J Phys 8, 106.CrossrefGoogle Scholar

  • [39] Westphal, V., Blanca, C. M., Dyba, M., Kastrup, L., and Hell, S. W. (2003) Laser-diode-stimulated emission depletion microscopy, Appl Phys Lett 82, 3125-3127.CrossrefGoogle Scholar

  • [40] Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C., and Hell, S. W. (2009) Sted microscopy reveals crystal colour centres with nanometric resolution, Nat Photonics 3, 144-147.CrossrefGoogle Scholar

  • [41] Auksorius, E., Boruah, B. R., Dunsby, C., Lanigan, P. M. P., Kennedy, G., Neil, M. A. A., and French, P. M. W. (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging, Opt Lett 33, 113-115.CrossrefGoogle Scholar

  • [42] Wildanger, D., Rittweger, E., Kastrup, L., and Hell, S. W. (2008) STED microscopy with a supercontinuum laser source, Opt Express 16, 9614-9621.CrossrefGoogle Scholar

  • [43] Wildanger, D., Medda, R., Kastrup, L., and Hell, S. W. (2009) A compact STED microscope providing 3D nanoscale resolution, J Microsc 236, 35-43.Google Scholar

  • [44] Wildanger, D., Bückers, J., Westphal, V., Hell, S. W., and Kastrup, L. (2009) A STED microscope aligned by design, Opt Express 17, 16100-16110.CrossrefGoogle Scholar

  • [45] Blom, H., Rönnlund, D., Scott, L., Spicarova, Z., Widengren, J., Bondar, A., Aperia, A., and Brismar, H. (2011) Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy, BMC Neuroscience 12, 16.CrossrefGoogle Scholar

  • [46] Rankin, B. R., Kellner, R. R., and Hell, S. W. (2008) Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source, Opt Lett 33, 2491-2493.CrossrefGoogle Scholar

  • [47] Rankin, B. R., and Hell, S. W. (2009) STED microscopy with a MHz pulsed stimulated-Ramanscattering source, Opt Express 17, 15679-15684.CrossrefGoogle Scholar

  • [48] Rankin, B. R., Moneron, G., Wurm, C. A., Nelson, J. C., Walter, A., Schwarzer, D., Schroeder, J., Colon- Ramos, D. A., and Hell, S. W. (2011) Nanoscopy in a Living Multicellular Organism Expressing GFP, Biophys J 100, L63-L65.Google Scholar

  • [49] Willig, K. I., Harke, B., Medda, R., and Hell, S. W. (2007) STED microscopy with continuous wave beams, Nat Methods 4, 915-918.CrossrefGoogle Scholar

  • [50] Harke, B. (2008) 3D STED Microscopy with Pulsed and Continuous Wave Lasers, Georg- August-University Goettingen, Goettingen.Google Scholar

  • [51] Ding, J. B., Takasaki, K. T., and Sabatini, B. L. (2009) Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy, Neuron 63, 429-437.CrossrefGoogle Scholar

  • [52] Moneron, G., and Hell, S. (2009) Two-photon excitation STED microscopy, Opt Express 17, 14567-14573.CrossrefGoogle Scholar

  • [53] Moneron, G., Medda, R., Hein, B., Giske, A., Westphal, V., and Hell, S. W. (2010) Fast STED microscopy with continuous wave fiber lasers, Opt Express 18, 1302-1309.CrossrefGoogle Scholar

  • [54] Bianchini, P., and Diaspro, A. (2012) Fast scanning STED and two-photon fluorescence excitation microscopy with continuous wave beam, J Microsc 245, 225-228.CrossrefGoogle Scholar

  • [55] Honigmann, A., Eggeling, C., Schulze, M., and Lepert, A. (2012) Super-resolution STED microscopy advances with yellow CW OPSL, Laser Focus World: international resource for technology and applications in the global photonics industry 48, 75-79.Google Scholar

  • [56] Mueller, V., Eggeling, C., Karlsson, H., and von Gegerfelt, D. (2012) CW DPSS Lasers Make STED Microscopy More Practical, Biophotonics 19, 30-32.Google Scholar

  • [57] Friedemann, K., Turshatov, A., Landfester, K., and Crespy, D. (2011) Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning, Langmuir 27, 7132-7139.CrossrefGoogle Scholar

  • [58] Moffitt, J. R., Osseforth, C., and Michaelis, J. (2011) Time-gating improves the spatial resolution of STED microscopy, Opt Express 19, 4242-4254.CrossrefGoogle Scholar

  • [59] Vicidomini, G., Moneron, G., Han, K. Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, H., Eggeling, C., and Hell, S. W. (2011) Sharper low-power STED nanoscopy by time gating, Nat Methods 8, 571-573.CrossrefGoogle Scholar

  • [60] Vicidomini, G., Schoenle, A., Ta, H., Han, K. Y., Moneron, G., Eggeling, C., and Hell, S. W. (2013) STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects, PloS ONE 8, e54421.CrossrefGoogle Scholar

  • [61] Kastrup, L., Wildanger, D., Rankin, B., and Hell, S. W. (2010) STED Microscopy with Compact Light Sources, In Nanoscopy and Multidimensional Optical Fluorescence Microscopy (Diaspro, A., Ed.), pp 1 - 13, Chapman & Hall/CRC, Boca Raton.Google Scholar

  • [62] Reuss, M., Engelhardt, J., and Hell, S. (2010) Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation, Opt Express 18, 1049 - 1058.CrossrefGoogle Scholar

  • [63] Gould, T. J., Burke, D., Bewersdorf, J., and Booth, M. J. (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens, Opt Express 20, 20998.CrossrefGoogle Scholar

  • [64] Gould, T. J., Kromann, E. B., Burke, D., Booth, M. J., and Bewersdorf, J. (2013) Auto-aligning stimulated emission depletion microscope using adaptive optics, Opt Lett 38, 1860-1862. CrossrefGoogle Scholar

  • [65] Denk, W., Strickler, J. H., and Webb, W. W. (1990) 2- photon laser scanning fluorescence microscopy, Science 248, 73-76.CrossrefGoogle Scholar

  • [66] Denk, W. (1996) Two-photon excitation in functional biological imaging, J Biomed Opt 1, 296-304.CrossrefGoogle Scholar

  • [67] Dittrich, P. S., and Schwille, P. (2001) Photobleaching and stabilization of fluorophores used for singlemolecule analysis with one- and two-photon excitation, Appl Phys B 73, 829-837.CrossrefGoogle Scholar

  • [68] Eggeling, C., Volkmer, A., and Seidel, C. A. M. (2005) Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy, Chemphyschem 6, 791-804.CrossrefGoogle Scholar

  • [69] Eggeling, C., Widengren, J., Rigler, R., and Seidel, C. A. M. (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis, Anal Chem 70, 2651-2659.CrossrefGoogle Scholar

  • [70] Ringemann, C., Schonle, A., Giske, A., von Middendorff, C., Hell, S. W., and Eggeling, C. (2008) Enhancing Fluorescence Brightness: Effect of Reverse Intersystem Crossing Studied by Fluorescence Fluctuation Spectroscopy, Chemphyschem 9, 612-624.CrossrefGoogle Scholar

  • [71] Hotta, J., Fron, E., Dedecker, P., Janssen, K. P. F., Li, C., Muellen, K., Harke, B., Bückers, J., Hell, S. W., and Hofkens, J. (2010) Spectroscopic Rationale for Efficient Stimulated-Emission Depletion Microscopy Fluorophores, J Am Chem Soc 132, 5021 - 5023.CrossrefGoogle Scholar

  • [72] Donnert, G., Eggeling, C., and Hell, S. W. (2009) Triplet-Relaxation Microscopy with bunched pulsed excitation, Photochem Photobiol 8, 481-485.CrossrefGoogle Scholar

  • [73] Urban, N. T., Willig, K. I., Hell, S. W., and Nagerl, U. V. (2011) STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices, Biophys J 101, 1277-1284.CrossrefGoogle Scholar

  • [74] Berning, S., Willig, K. I., Steffens, H., Dibaj, P., and Hell, S. W. (2012) Nanoscopy in a Living Mouse Brain, Science 335, 551.CrossrefGoogle Scholar

  • [75] Kolmakov, K., Belov, V. N., Bierwagen, J., Ringemann, C., Mueller, V., Eggeling, C., and Hell, S. W. (2010) Red-Emitting Rhodamine Dyes for Fluorescence Microscopy and Nanoscopy, Chemistry - A European Journal 16, 158-166.CrossrefGoogle Scholar

  • [76] Kolmakov, K., Belov, V. N., Wurm, C. A., Harke, B., Leutenegger, M., Eggeling, C., and Hell, S. W. (2010) A Versatile Route to Red-Emitting Carbopyronine Dyes for Optical Microscopy and Nanoscopy, Eur. J. Org. Chem. 2010, 3593-3610.Google Scholar

  • [77] Mitronova, G. Y., Belov, V. N., Bossi, M. L., Wurm, C. A., Meyer, L., Medda, R., Moneron, G., Bretschneider, S., Eggeling, C., Jakobs, S., and Hell, S. W. (2010) New Fluorinated Rhodamines for Optical Microscopy and Nanoscopy, Chemistry A European Journal 16, 4477 - 4488.CrossrefGoogle Scholar

  • [78] Opazo, F., Levy, M., Byrom, M., Schaefer, C., Geisler, C., Groemer, T. W., Ellington, A. D., and Rizzoli, S. O. (2012) Aptamers as potential tools for superresolution microscopy, Nat Methods 9, 938-939.CrossrefGoogle Scholar

  • [79] Hein, B., Willig, K. I., Wurm, C. A., Westphal, V., Jakobs, S., and Hell, S. W. (2010) Stimulated Emission Depletion Nanoscopy of Living Cells Using SNAP-Tag Fusion Proteins, Biophys J 98, 158 -163.CrossrefGoogle Scholar

  • [80] Pellett, P. A., Sun, X., Gould, T. J., Rothman, J. E., Xu, M.-Q., Correa Jr., I. R., and Bewersdorf, J. (2011) Two-color STED microscopy in living cells, Biomedical Optics Express 2, 2364-2371.CrossrefGoogle Scholar

  • [81] Lukinavicius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., Mueller, V., Reymond, L., Correa, I. R., Luo, Z.-G., Schultz, C., Lemke, E. A., Heppenstall, P., Eggeling, C., and Johnsson, K. (2013) A near-infrared fluorophore for live-cell superresolution microscopy of cellular proteins, Nature Chemistry 5, 132-139.CrossrefGoogle Scholar

  • [82] Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A., and Hell, S. W. (2008) Spherical nanosized focal spot unravels the interior of cells, Nat Methods 5, 539-544.CrossrefGoogle Scholar

  • [83] Dean, C., Liu, H., Staudt, T., Stahlberg, M. A., Vingill, S., Buckers, J., Kamin, D., Engelhardt, J., Jackson, M. B., Hell, S. W., and Chapman, E. R. (2012) Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity, The Journal of Neuroscience 32, 5398-5413.CrossrefGoogle Scholar

  • [84] Donnert, G., Keller, J., Wurm, C. A., Rizzoli, S. O., Westphal, V., Schoenle, A., Jahn, R., Jakobs, S., Eggeling, C., and Hell, S. W. (2007) Two-Color Far- Field Fluorescence Nanoscopy, Biophys J 92, L67- L69.Google Scholar

  • [85] Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S. O., Donnert, G., and Hell, S. W. (2008) Dualcolor sted microscopy at 30-nm focal-plane resolution, Small 4, 1095-1100.CrossrefGoogle Scholar

  • [86] Neumann, D., Bückers, J., Kastrup, L., Hell, S., and Jakobs, S. (2010) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms, PMC Biophysics 5, 1-4.Google Scholar

  • [87] Opaz, F., Punge, A., Bückers, J., Hoopmann, P., Kastrup, L., Hell, S. W., and Rizzoli, S. O. (2010) Limited Intermixing of Synaptic Vesicle Components upon Vesicle Recycling, Traffic 11, 800-812. CrossrefGoogle Scholar

  • [88] Reisinger, E., Bresee, C., Neef, J., Nair, R., Reuter, K., Bulankina, A., Nouvian, R., Koch, M., Bückers, J., Kastrup, L., Roux, I., Petit, C., Hell, S. W., Brose, N., Rhee, J., Kügler, S., Brigande, J. V., and Moser, T. (2011) Probing the Functional Equivalence of Otoferlin and Synaptotagmin 1 in Exocytosis, The Journal of Neuroscience 31, 4886-4895.Google Scholar

  • [89] Blom, H., Rönnlund, D., Scott, L., Spicarova, Z., Rantanen, V., Widengren, J., Aperia, A., and Brismar, H. (2012) Nearest Neighbor Analysis of Dopamine D1 Receptors and Na1-K1-ATPases in Dendritic Spines Dissected by STED Microscopy, Microsc Res Tech 75, 220-228.Google Scholar

  • [90] Bückers, J., Wildanger, D., Vicidomini, G., Kastrup, L., and Hell, S. W. (2011) Simultaneous multilifetime multi-color STED imaging for colocalization analyses, Opt Express 19, 3130-3143.CrossrefGoogle Scholar

  • [91] Willig, K. I., Stiel, A. C., Brakemann, T., Jakobs, S., and Hell, S. W. (2011) Dual-Label STED Nanoscopy of Living Cells Using Photochromism, Nano Lett 11, 3970-3973.CrossrefGoogle Scholar

  • [92] Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., and Hell, S. W. (2008) Video- Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement, Science 320, 246-249.CrossrefGoogle Scholar

  • [93] Westphal, V., Lauterbach, M. A., Di Nicola, A., and Hell, S. W. (2007) Dynamic far-field fluorescence nanoscopy, New J Phys 9, 435.CrossrefGoogle Scholar

  • [94] Bingen, P., Reuss, M., Engelhardt, J., and Hell, S. W. (2011) Parrallelized STED fluorescence nanoscopy, Opt Express 19, 23716-23726.CrossrefGoogle Scholar

  • [95] Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S. W. (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, PNAS 102, 17565-17569.CrossrefGoogle Scholar

  • [96] Hell, S. W., Jakobs, S., and Kastrup, L. (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions, Appl Phys A 77, 859-860.CrossrefGoogle Scholar

  • [97] Grotjohann, T., Testa, I., Leutenegger, M., Bock, H., Urban, N. T., Lavoie-Cardinal, F., Willig, K. I., Eggeling, C., Jakobs, S., and Hell, S. W. (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature 478, 204-208.CrossrefGoogle Scholar

  • [98] Brakemann, T., Stiel, A. C., Weber, G., Andresen, M., Testa, I., Grotjohann, T., Leutenegger, M., Plessmann, U., Urlaub, H., Eggeling, C., Wahl, M., Hell, S. W., and Jakobs, S. (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching, Nat Biotechnol 29, 942-947.CrossrefGoogle Scholar

  • [99] Testa, I., Urban, N. T., Jakobs, S., Eggeling, C., Willig, K. I., and Hell, S. W. (2012) Nanoscopy of Living Brain Slices with Low Light Levels, Neuron 75, 992-1000.CrossrefGoogle Scholar

  • [100] Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d’Este, E., Jakobs, S., Eggeling, C., and Hell, S. W. (2013) Nanoscopy with more than 100,000 ‘doughnuts’, Nat Methods 10, 737-740.Google Scholar

  • [101] Gould, T. J., Myers, J. R., and Bewersdorf, J. (2011) Total internal reflection STED microscopy, Opt Express 19, 13351-13357.CrossrefGoogle Scholar

  • [102] Leutenegger, M., Ringemann, C., Lasser, T., Hell, S. W., and Eggeling, C. (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS), Opt Express 20, 5243-5263.CrossrefGoogle Scholar

  • [103] Li, Q., Wu, S. S. H., and Chou, K. C. (2009) Subdiffraction-Limit Two-Photon Fluorescence Microscopy for GFP-Tagged Cell Imaging, Biophys J 97, 3224-3228.CrossrefGoogle Scholar

  • [104] Klar, T. A., Jakobs, S., Dyba, M., Egner, A., and Hell, S. W. (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, PNAS 97, 8206-8210.CrossrefGoogle Scholar

  • [105] Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schoenle, A., and Hell, S. W. (2008) Resolution scaling in STED microscopy, Opt Express 16, 4154-4162.CrossrefGoogle Scholar

  • [106] Harke, B., Ullal, C. K., Keller, J., and Hell, S. W. (2008) Three-Dimensional Nanoscopy of Colloidal Crystals, Nano Lett 8, 1309-1313.CrossrefGoogle Scholar

  • [107] Dyba, M., and Hell, S. W. (2002) Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution, Phys Rev Lett 88, 163901.CrossrefGoogle Scholar

  • [108] Dyba, M., Jakobs, S., and Hell, S. W. (2003) Immunofluorescence stimulated emission depletion microscopy, Nat Biotechnol 21, 1303-1304.CrossrefGoogle Scholar

  • [109] Hell, S. W., Schmidt, R., and Egner, A. (2009) Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses, Nat Photonics 3, 381-387.CrossrefGoogle Scholar

  • [110] Schmidt, R., Wurm, C. A., Punge, A., Egner, A., Jakobs, S., and Hell, S. W. (2009) Mitochondrial Cristae Revealed with Focused Light, Nano Lett 9, 2508-2510.CrossrefGoogle Scholar

  • [111] Friedrich, M., Gan, Q., Ermolayev, V., and Harms, G. S. (2011) STED-SPIM: Stimulated Emission Depletion Improves Sheet Illumination Microscopy Resolution, Biophys J 100, L43-L45.Google Scholar

  • [112] Kastrup, L., Blom, H., Eggeling, C., and Hell, S. W. (2005) Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes, Phys Rev Lett 94, 178104.CrossrefGoogle Scholar

  • [113] Blom, H., Kastrup, L., and Eggeling, C. (2006) Fluorescence Fluctuation Spectroscopy in Reduced Detection Volumes, Curr Pharm Biotechnol 7, 51-66.CrossrefGoogle Scholar

  • [114] Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V. N., Hein, B., von Middendorff, C., Schonle, A., and Hell, S. W. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature 457, 1159-U1121.CrossrefGoogle Scholar

  • [115] Ringemann, C., Harke, B., Middendorff, C. V., Medda, R., Honigmann, A., Wagner, R., Leutenegger, M., Schoenle, A., Hell, S., and Eggeling, C. (2009) Exploring single-molecule dynamics with fluorescence nanoscopy, New J Phys 11, 103054.CrossrefGoogle Scholar

  • [116] Mueller, V., Ringemann, C., Honigmann, A., Schwarzmann, G., Medda, R., Leutenegger, M., Polyakova, S., Belov, V. N., Hell, S. W., and Eggeling, C. (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeletonmodulated lipid interactions in living cells, Biophys J 101, 1651-1660.CrossrefGoogle Scholar

  • [117] Eggeling, C. (2012) STED-FCS Nanoscopy of Membrane Dynamics, In Fluorescent Methods to Study Biological Membranes (Mely, Y., and Duportail, G., Eds.), pp 291-309 Springer-Verlag, Berlin.Google Scholar

  • [118] Mueller, V., Honigmann, A., Ringemann, C., Medda, R., Schwarzmann, G., and Eggeling, C. (2013) FCS in STED Microscopy: Studying the Nanoscale of Lipid Membrane Dynamics, In Methods Enzymol (Tetin, S. Y., Ed.), pp 1-38, Elsevier, Burlington: Academic Press. Google Scholar

About the article

Received: 2013-09-18

Accepted: 2013-10-04

Published Online: 2013-10-15

Published in Print: 2014-01-01


Citation Information: NanoBioImaging, ISSN (Online) 2299-3150, DOI: https://doi.org/10.2478/nbi-2013-0001.

Export Citation

© 2014 by Mathias P. Clausen et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M P Clausen, H Colin-York, F Schneider, C Eggeling, and M Fritzsche
Journal of Physics D: Applied Physics, 2017, Volume 50, Number 6, Page 064002
[2]
Maksim V Sednev, Vladimir N Belov, and Stefan W Hell
Methods and Applications in Fluorescence, 2015, Volume 3, Number 4, Page 042004

Comments (0)

Please log in or register to comment.
Log in