Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Advances in Correlative Single-Molecule Localization Microscopy and Electron Microscopy

Ulrike Endesfelder
  • Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany Current address: Max Planck Institute for Terrestrial Microbiology
  • LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Department of Systems and Synthetic Microbiology, Karlvon- Frisch-Str. 16, 35043 Marburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-28 | DOI: https://doi.org/10.2478/nbi-2014-0002


During the last few decades, correlative fluorescence light and electron microscopy (FLM-EM) has gained increased interest in the life sciences concomitant with the advent of fluorescence light microscopy. It has become, accompanied by numerous developments in both techniques, an important tool to study bio-cellular structure and function as it combines the specificity of fluorescence labeling with the high structural resolution and cellular context information given by the EM images. Having the recently introduced single-molecule localization microscopy techniques (SMLM) at hand, FLM-EM can now make use of improved fluorescence light microscopy resolution, single-molecule sensitivity and quantification strategies. Here, currently used methods for correlative SMLM and EM including the special requirements in sample preparation and imaging routines are summarized and an outlook on remaining challenges concerning methods and instrumentation is provided.

Keywords: correlative fluorescence light and electron microscopy; single-molecule localization microscopy; superresolution microscopy; cryo-microscopy


  • [1] Lichtman, J.W. and J.A. Conchello, Fluorescence microscopy. Nat Methods, 2005. 2(12): p. 910-9. CrossrefGoogle Scholar

  • [2] Tsien, R.Y., The green fluorescent protein. Annu Rev Biochem, 1998. 67: p. 509-44. PubMedCrossrefGoogle Scholar

  • [3] Webster, R.E., M. Osborn, and K. Weber, Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy. Exp Cell Res, 1978. 117(1): p. 47-61. CrossrefGoogle Scholar

  • [4] Rieder, C.L. and S.S. Bowser, Correlative immunofluorescence and electron microscopy on the samesection of epon-embedded material. J Histochem Cytochem, 1985. 33(2): p. 165-71. PubMedCrossrefGoogle Scholar

  • [5] Müller-Reichert, T. and P. Verkade, Correlative Light and Electron Microscopy, in Methods Cell Biol 2012, Academic Press. Google Scholar

  • [6] Briegel, A., et al., Correlated light and electron cryo-microscopy. Methods Enzymol, 2010. 481: p. 317-41. Google Scholar

  • [7] Giepmans, B.N., Bridging fluorescence microscopy and electron microscopy. Histochem Cell Biol, 2008. 130(2): p. 211-7. PubMedCrossrefGoogle Scholar

  • [8] Cortese, K., A. Diaspro, and C. Tacchetti,Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections. J Histochem Cytochem, 2009. 57(12): p. 1103-12. PubMedCrossrefGoogle Scholar

  • [9] Betzig, E., et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006. 313(5793): p. 1642-5. Google Scholar

  • [10] Rust, M.J., M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 2006. 3(10): p. 793-5. CrossrefPubMedGoogle Scholar

  • [11] Heilemann, M., et al., Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl, 2008. 47(33): p. 6172-6. CrossrefGoogle Scholar

  • [12] Shannon, C.E., Communication in the Presence of Noise. Proceedings of the Institute of Radio Engineers, 1949. 37(1): p. 10- 21. Google Scholar

  • [13] Watanabe, S., et al., Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods, 2011. 8(1): p. 80-4. CrossrefGoogle Scholar

  • [14] Perinetti, G., et al., Correlation of 4Pi and Electron Microscopy to Study Transport Through Single Golgi Stacks in Living Cells with Super Resolution. Traffic, 2009. 10(4): p. 379-391. CrossrefGoogle Scholar

  • [15] Monserrate, A., S. Casado, and C. Flors, Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts. ChemPhysChem, 2014. 15(4): p. 647-50. PubMedCrossrefGoogle Scholar

  • [16] Harke, B., et al., A novel nanoscopic tool by combining AFM with STED microscopy. Optical Nanoscopy, 2012. 1(1): p. 3. Google Scholar

  • [17] Sharma, S., et al., Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine-Nanotechnology Biology and Medicine, 2012. 8(5): p. 757-766. CrossrefGoogle Scholar

  • [18] Chacko, J.V., et al., Sub-diffraction nano manipulation using STED AFM. PLoS One, 2013. 8(6): p. e66608. CrossrefGoogle Scholar

  • [19] Zanacchi, F.C., et al., Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods, 2011. 8(12): p. 1047-+. CrossrefGoogle Scholar

  • [20] Lavagnino, Z., F.C. Zanacchi, and A. Diaspro, Two-Photon Excitation and Selective Plane Illumination Microscopy: A Combination to Minimize Scattering Effects While Imaging Thick Samples. Biophys J, 2013. 104(2): p. 670a-670a. CrossrefGoogle Scholar

  • [21] Flottmann, B., et al., Correlative light microscopy for highcontent screening. Biotechniques, 2013. 55(5): p. 243-52. Google Scholar

  • [22] Holden, S.J., et al., High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci U S A, 2014. 111(12): p. 4566-4571. Google Scholar

  • [23] Gunkel, M., et al., Integrated and correlative high-throughput and super-resolution microscopy. Histochem Cell Biol, 2014. 141(6): p. 597-603. Google Scholar

  • [24] Nanguneri, S., et al., Three-dimensional, tomographic superresolution fluorescence imaging of serially sectioned thick samples. PLoS One, 2012. 7(5): p. e38098. CrossrefGoogle Scholar

  • [25] Kopek, B.G., et al., Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A, 2012. 109(16): p. 6136-41. CrossrefGoogle Scholar

  • [26] Suleiman, H., et al., Nanoscale protein architecture of the kidney glomerular basement membrane. Elife, 2013. 2: p. e01149. Google Scholar

  • [27] Perkovic, M., et al., Correlative light- and electron microscopy with chemical tags. J Struct Biol, 2014. 186(2): p. 205-13. CrossrefGoogle Scholar

  • [28] Sochacki, K.A., et al., Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods, 2014. 11(3): p. 305-8. CrossrefGoogle Scholar

  • [29] Loschberger, A., et al., Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci, 2014. Google Scholar

  • [30] Chang, Y.W., et al., Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods, 2014. 11(7): p. 737-9. CrossrefGoogle Scholar

  • [31] Kaufmann, R., et al., Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett, 2014. 14(7): p. 4171-5. CrossrefGoogle Scholar

  • [32] Watanabe, S. and E.M. Jorgensen, Chapter 15 - Visualizing Proteins in ElectronMicrographs at Nanometer Resolution, in Methods Cell Biol, M.-R. Thomas and V. Paul, Editors. 2012, Academic Press. p. 283-306. Google Scholar

  • [33] Dubochet, J., The physics of rapid cooling and its implications for cryoimmobilization of cells. Methods Cell Biol, 2007. 79: p. 7-21. PubMedCrossrefGoogle Scholar

  • [34] Nickell, S., et al., A visual approach to proteomics. Nat Rev Mol Cell Biol, 2006. 7(3): p. 225-30. PubMedCrossrefGoogle Scholar

  • [35] Hess, S.T., et al., Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A, 2007. 104(44): p. 17370-5. CrossrefGoogle Scholar

  • [36] Shroff, H., et al., Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods, 2008. 5(5): p. 417-23. CrossrefGoogle Scholar

  • [37] Niu, L. and J. Yu, Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J, 2008. 95(4): p. 2009-16. CrossrefPubMedGoogle Scholar

  • [38] Manley, S., et al., High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods, 2008. 5(2): p. 155-7. CrossrefGoogle Scholar

  • [39] Biteen, J.S., et al., Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods, 2008. 5(11): p. 947-9. PubMedCrossrefGoogle Scholar

  • [40] Wombacher, R., et al., Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods, 2010. 7(9): p. 717-9. CrossrefGoogle Scholar

  • [41] Lee, H.L., et al., Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J Am Chem Soc, 2010. 132(43): p. 15099-101. Google Scholar

  • [42] Jones, S.A., et al., Fast, three-dimensional super-resolution imaging of live cells. Nat Methods, 2011. 8(6): p. 499-508. CrossrefGoogle Scholar

  • [43] Klein, T., et al., Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods, 2011. 8(1): p. 7-9. CrossrefGoogle Scholar

  • [44] Eckhardt, M., et al., A SNAP-tagged derivative of HIV-1–a versatile tool to study virus-cell interactions. PLoS One, 2011. 6(7): p. e22007. Google Scholar

  • [45] Lukinavicius, G., et al., A near-infrared fluorophore for livecell super-resolution microscopy of cellular proteins. Nat Chem, 2013. 5(2): p. 132-9. CrossrefGoogle Scholar

  • [46] Izeddin, I., et al., Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One, 2011. 6(1): p. e15611. CrossrefGoogle Scholar

  • [47] Shroff, H., et al., Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A, 2007. 104(51): p. 20308-13. CrossrefGoogle Scholar

  • [48] Subach, F.V., et al., Photoactivatable mCherry for highresolution two-color fluorescence microscopy. Nat Methods, 2009. 6(2): p. 153-9. CrossrefGoogle Scholar

  • [49] Subach, F.V., et al., Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc, 2010. 132(18): p. 6481-91. Google Scholar

  • [50] Testa, I., et al., Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J, 2010. 99(8): p. 2686-94. CrossrefGoogle Scholar

  • [51] Gunewardene, M.S., et al., Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J, 2011. 101(6): p. 1522-8. CrossrefGoogle Scholar

  • [52] Wilmes, S., et al., Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. Angew Chem Int Ed Engl, 2012. 51(20): p. 4868-71. CrossrefGoogle Scholar

  • [53] Appelhans, T., et al., Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. Nano Lett, 2012. 12(2): p. 610-6. CrossrefGoogle Scholar

  • [54] Benke, A., et al.,Multicolor single molecule tracking of stochastically active synthetic dyes. Nano Lett, 2012. 12(5): p. 2619-24. CrossrefGoogle Scholar

  • [55] Klein, T., S. van de Linde, and M. Sauer, Live-cell superresolution imaging goes multicolor. ChemBioChem, 2012. 13(13): p. 1861-3. CrossrefGoogle Scholar

  • [56] Mlodzianoski, M.J., et al., Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt Express, 2011. 19(16): p. 15009-19. CrossrefGoogle Scholar

  • [57] Bleck, C.K., et al., Comparison of different methods for thin section EM analysis ofMycobacterium smegmatis. J Microsc, 2010. 237(1): p. 23-38. Google Scholar

  • [58] Hurbain, I. and M. Sachse, The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biology of the Cell, 2011. 103(9): p. 405-420. CrossrefGoogle Scholar

  • [59] Clancy, B. and L.J. Cauller, Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods, 1998. 83(2): p. 97-102. CrossrefPubMedGoogle Scholar

  • [60] Moerner, W.E. and M. Orrit, Illuminating single molecules in condensed matter. Science, 1999. 283(5408): p. 1670-6. Google Scholar

  • [61] Schwartz, C.L., et al., Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc, 2007. 227(Pt 2): p. 98-109. Google Scholar

  • [62] Kozankiewicz, B. and M. Orrit, Single-molecule photophysics, from cryogenic to ambient conditions. Chem Soc Rev, 2014. 43(4): p. 1029-43. PubMedCrossrefGoogle Scholar

  • [63] Creemers, T.M., et al., Photophysics and optical switching in green fluorescent protein mutants. Proc Natl Acad Sci U S A, 2000. 97(7): p. 2974-8. CrossrefGoogle Scholar

  • [64] Faro, A.R., et al., Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochem Photobiol Sci, 2010. 9(2): p. 254-62. CrossrefGoogle Scholar

  • [65] Kaufmann, R., C. Hagen, and K. Grunewald, Fluorescence cryomicroscopy: current challenges and prospects. Curr Opin Chem Biol, 2014. 20: p. 86-91. CrossrefGoogle Scholar

  • [66] Weisenburger, S., et al., Cryogenic colocalization microscopy for nanometer-distance measurements. ChemPhysChem, 2014. 15(4): p. 763-70. CrossrefGoogle Scholar

  • [67] Weisenburger, S., et al. Cryogenic localization of single molecules with angstrom precision. 2013. Google Scholar

  • [68] Le Gros, M.A., et al., High-aperture cryogenic light microscopy. J Microsc, 2009. 235(1): p. 1-8. Google Scholar

  • [69] Shibata, Y., et al., Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research. Biochim Biophys Acta, 2014. 1837(6): p. 880-7. Google Scholar

  • [70] Carlson, D.B. and J.E. Evans, Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy. J Vis Exp, 2011(52). CrossrefGoogle Scholar

  • [71] Tokuyasu, K.T., A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol, 1973. 57(2): p. 551-65. CrossrefGoogle Scholar

  • [72] Bates, M., et al., Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 2007. 317(5845): p. 1749-53. Google Scholar

  • [73] Heuser, J., Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique. Methods Cell Biol, 1981. 22: p. 97-122. CrossrefGoogle Scholar

  • [74] van de Linde, S. and M. Sauer, Howto switch a fluorophore: from undesired blinking to controlled photoswitching. Chem Soc Rev, 2014. 43(4): p. 1076-87. Google Scholar

  • [75] Jimenez, N., et al., Gridded Aclar: preparation methods and use for correlative light and electron microscopy of cell monolayers, by TEM and FIB-SEM. J Microsc, 2010. 237(2): p. 208-20. Google Scholar

  • [76] Kukulski,W., et al., Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol, 2011. 192(1): p. 111-9. CrossrefGoogle Scholar

  • [77] Kukulski, W., et al., Chapter 13 - Precise, Correlated FluorescenceMicroscopy and Electron Tomography of Lowicryl Sections Using Fluorescent Fiducial Markers, in Methods Cell Biol, M.-R. Thomas and V. Paul, Editors. 2012, Academic Press. p. 235-257. Google Scholar

  • [78] Keppler, A., et al., A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol, 2003. 21(1): p. 86-9. Google Scholar

  • [79] Los, G.V., et al., HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol, 2008. 3(6): p. 373-82. CrossrefGoogle Scholar

  • [80] Holm, T., et al., A blueprint for cost-efficient localization microscopy. ChemPhysChem, 2014. 15(4): p. 651-4.CrossrefGoogle Scholar

About the article

Received: 2014-09-23

Accepted: 2014-10-29

Published Online: 2015-01-28

Citation Information: NanoBioImaging, Volume 1, Issue 1, ISSN (Online) 2299-3150, DOI: https://doi.org/10.2478/nbi-2014-0002.

Export Citation

© 2014 Ulrike Endesfelder. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Benjamin G Kopek, Maria G Paez-Segala, Gleb Shtengel, Kem A Sochacki, Mei G Sun, Yalin Wang, C Shan Xu, Schuyler B van Engelenburg, Justin W Taraska, Loren L Looger, and Harald F Hess
Nature Protocols, 2017, Volume 12, Number 5, Page 916

Comments (0)

Please log in or register to comment.
Log in