Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - New Crystal Structures

Editor-in-Chief: Huppertz, Hubert

Editorial Board: Hübschle, Christian / Janka, Oliver / Lemmerer, Andreas / Reiß, Guido / Tiekink, Edward R.T.


IMPACT FACTOR 2018: 0.290

Cite Score 2018: 0.31

SCImago Journal Rank (SJR) 2018: 0.152
Source Normalized Impact per Paper (SNIP) 2018: 0.231

Open Access
Online
ISSN
2197-4578
See all formats and pricing
More options …
Volume 231, Issue 1

Issues

Crystal structure of (E)-2-(benzo[d]thiazol-2-yl)-3-(pyridin-3-yl)acrylonitrile)

Pedro De-La-Torre
  • Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of, Chemistry of Natural Resources, Universidad de Talca, Casilla 747, Talca, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Margarita Gutierrez
  • Corresponding author
  • Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of, Chemistry of Natural Resources, Universidad de Talca, Casilla 747, Talca, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julio Caballero
  • Center for Bioinformatics and Molecular Simulation, Universidad de Talca, 2, Norte 685, Casilla 721, Talca, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Trilleras
  • Research Group Heterocyclic Compounds, Chemistry Program, Universidad del, Atlántico, Km 7 via Puerto Colombia, Barranquilla, Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis Astudillo
  • Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of, Chemistry of Natural Resources, Universidad de Talca, Casilla 747, Talca, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro Cardenas
  • Departamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 1 70, Antofagasta, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivan Brito
  • Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-13 | DOI: https://doi.org/10.1515/ncrs-2015-0073

Abstract

C15H9N3S, triclinic, P1̅ (no. 2), a = 9.5737(5) Å, b = 12.0958(4) Å, c = 12.2705(7) Å, α = 64.083(5) Å, β = 80.907(4) Å, γ = 82.800(4), V = 1259.44(11) Å3, Z = 4, Rgt(F) = 0.0460, wRref(F2) = 0.140, T = 293(2) K.

This article offers supplementary material which is provided at the end of the article.

CCDC no.:: 1441735

The crystal structure is shown in the figure, Tables 13 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Table 3

Atomic displacement parameters (Å2).

Source of material

The compound was obtained by Knoevenagel condensation between equimolar amounts of 2-(benzo[d]thiazol-2-yl)acetonitrile and 3-pyridinecarboxaldehyde according to literature [1]. The resulting mixtures were stirred for 18 minutes at room temperature using ethanol as solvent and catalytic amounts of triethylamine (TEA). The precipitates which formed were collected by filtration, washed with ethanol and dried, and then crystallized from ethanol giving the compound in yields of 66%; m.p. 155–157 °C; EI—MS (m/z): 263 (M+, 100), 226 (20), 210 (38). The 1H-NMR analysis of this derivative revealed a single olefinic proton at δ 8.51 associated with the formation of a single E-isomer. Crystals suitable for single-crystal X-ray diffraction were grown from solutions in ethanol.

Experimental details

H atoms were located in the difference Fourier map, but refined with fixed individual displacement parameters, using a riding mode with C—H distances of 0.93 Å with Uiso(H) values of 1.2Ueq(C).

Discussion

The heteroaryl-acrylonitriles have emerged recently as a new family of acetylcholinesterase inhibitors (AChEIs) [1, 2]. In addition, this family of compounds have been proved for having prominent biological properties as antifungal, antitumor, and antibacterial activities [3–7], as well as applications for the design of dendrimers [8] and fluorescent probes for visualizing endogenous thiols in living cells [9, 10]. They have also been reported in the literature as versatile building-blocks for molecules with potential biological or pharmaceutical applications [11–17].

In the figure there are represented two molecules in the asymmetric unit, which are connected by non-classical C—H⋯N hydrogen bond interactions. The crystal structure is further stabilized by weak π−π stacking interactions with distance Cg1—Cg2i 3.80 Å (Cg1: C11/C16; Cg2i: C2/C7, symmetry code (i): 1−x, −y, 1−z). The main difference between both molecules is the dihedral angle formed by the benzothiazolyl fragment and the pyridine ring, which showed values of 4.97(6)° and 17.59(7)° for molecules A and B, respectively. The bond lengths and angles are in the expected ranges.

Acknowledgements:

Dedicated to the memory of Professor Luis Astudillo Saavedra for his scientific career, support and fraternity. Thanks the Doctoral Program of Applied Sciences at Universidad de Talca, as well as the Chilean International Cooperation Agency (AGCI) and CONICYT-Chile for a doctoral fellowship. M.G. and L.A. thank PIEI QUIM-BIO-Utalca project 1100481, J.C. thanks FONDECYT project 1130141. I.B. thank to CONICYT, FONDEQUIP program/single crystal diffractometer/EQM130021. The authors thank the responsible editor for supplying the figure.

References

  • 1.

    De-La-Torre, P.; Astudillo-Saavedra, L.; Caballero, J.; Quiroga, J.; Alzate-Morales, J. H.; Cabrera, M. G.; Trilleras, J.: A Novel Class of Selective Acetylcholinesterase Inhibitors: Synthesis and Evaluation of (E)-2-(Benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles. Molecules 17 (2012) 12072–12085.Web of ScienceGoogle Scholar

  • 2.

    Parveen, M.; Malla, A. M.; Alam, M.; Ahmad, M.; Rafiq, S.: Stereoselective synthesis of Z-acrylonitrile derivatives: catalytic and acetylcholinesterase inhibition studies. New J. Chem. 38 (2014) 1655–1667.Web of ScienceCrossrefGoogle Scholar

  • 3.

    Quiroga, J.; Cobo, D.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J.; et al. Synthesis and evaluation of novel E-2-(2-thienyl)- and Z-2-(3-thienyl)-3-arylacrylonitriles as antifungal and anticancer agents. Arch. Pharm. 340 (2007) 603–606.Web of ScienceCrossrefGoogle Scholar

  • 4.

    Hranjec, M.; Pavlović, G.; Marjanović, M.; Kralj, M.; Karminski-Zamola, G.: Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a]quinolines and fluorenes: synthesis, antitumor evaluation in vitro and crystal structure determination. Eur. J. Med. Chem. 45, (2010) 2405–2417.CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Refaat, H. M.: Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur. J. Med. Chem. 45 (2010) 2949–2956.CrossrefGoogle Scholar

  • 6.

    Shaikh, A. R.; Ismael, M.; Del Carpio, C. A.; Tsuboi, H.; Koyama, M.; Endou, A.: Three-dimensional quantitative structure-activity relationship (3 D-QSAR) and docking studies on (benzothiazole-2-yl) acetonitrile derivatives as c- Jun N-terminal kinase-3 (JNK3) inhibitors. Bioorg. Med. Chem. Lett. 16 (2006) 5917–5925..CrossrefGoogle Scholar

  • 7.

    Saczewski, F.; Stencel, A.; Bieńczak, A. M.; Langowska, K. A.; Michaelis, M.; Werel, W.: Structure-activity relationships of novel heteroaryl-acrylonitriles as cytotoxic and antibacterial agents. Eur. J. Med. Chem. 43 (2008) 1847–1857.Web of ScienceCrossrefGoogle Scholar

  • 8.

    Rajakumar, P.; Kalpana, V.; Ganesan, S.; Maruthamuthu, P.: Synthesis and DSSC application of novel dendrimers with benzothiazole and triazole units. Tetrahedron Lett. 52 (2011) 5812–5816.CrossrefGoogle Scholar

  • 9.

    De-la-Torre, P.; Garria-Beltran, O.; Tiznado, W.; Mena, N.; Saavedra, L. A.; Cabrera, M. G.: (E)-2-(Benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles as efficient Michael acceptors for cysteine: Real application in biological imaging. Sens. Actuators B 193 (2014) 391–399.Google Scholar

  • 10.

    Garria-Beltran, O.; Santos, J. G.; Fuentealba, S.; De-la-Torre, P.; Pavez, P.; Mena, N.: Mechanism study of the thiol-addition reaction to benzothiazole derivative for sensing endogenous thiols. Tetrahedron Lett. 56 (2015) 2437–2440.Web of ScienceGoogle Scholar

  • 11.

    Beutler, U.; Fuenfschilling, P. C.; Steinkemper, A.: An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part II. Org. Process Res. Dev. 11 (2007) 341–345.CrossrefGoogle Scholar

  • 12.

    Quiroga, J.; Trilleras, J.; Pantoja, D.; Aboma, R.; Insuasty, B.; Nogueras, M.: Microwave-assisted synthesis of pyrazolo[3,4-b]pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic P-diketones. Tetrahedron Lett. 51 (2010) 4717–4719.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Quiroga, J.; Cruz, S.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J.: Three-component synthesis of hexahydropyridopyrimidine-spirocyclohexanetriones induced by microwave. Tetrahedron Lett. 47 (2006) 27–30.CrossrefGoogle Scholar

  • 14.

    Jin, T.-S.; Zhang, J.-S.; Wang, A.-Q.; Li, T.-S.: Ultrasound-assisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media. Ultrason Sonochem 13 (2006) 220–224.CrossrefGoogle Scholar

  • 15.

    Quiroga, J.; Trilleras, J.; Galvez, J.; Insuasty, B.; Aboma, R.; Nogueras, M.; et al. 5-Cyanoacetylpyrimidines as intermediates for 7-aryl-6-cyanopyrido[2,3-d]pyrimidin-5-ones. Tetrahedron Lett. 50 (2009) 6404–6406.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Quiroga, J.; Cisneros, C.; Insuasty, B.; Abona, R.; Nogueras, M.; Sanchez, A.: A regiospecific three-component one-step cyclocondensation to 6-cyano-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-ones. Using microwaves under solvent-free conditions. Tetrahedron Lett. 42 (2001) 5625–5627.CrossrefGoogle Scholar

  • 17.

    Quiroga, J.; Trilleras, J.; Insuasty, B.; Aboma, R.; Nogueras, M.; Marchal, A.; et al. A straightforward synthesis of pyrimido[4,5-b]quinoline derivatives assisted by microwave irradiation. Tetrahedron Lett. 51 (2010) 1107–1109.CrossrefGoogle Scholar

  • 18.

    Sheldrick, G. M.: A short history of SHELX. Acta Cryst. A64 (2008) 112–122.CrossrefGoogle Scholar

  • 19.

    Agilent (2010) CrysAlis PRO. Agilent Technologies, Yarnton, England.Google Scholar

About the article

Corresponding author: Margarita Gutierrez, Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of, Chemistry of Natural Resources, Universidad de Talca, Casilla 747, Talca, Chile, e-mail:


Received: 2015-04-23

Accepted: 2015-12-10

Published Online: 2016-01-13

Published in Print: 2016-03-01


Citation Information: Zeitschrift für Kristallographie - New Crystal Structures, Volume 231, Issue 1, Pages 171–173, ISSN (Online) 2197-4578, ISSN (Print) 1433-7266, DOI: https://doi.org/10.1515/ncrs-2015-0073.

Export Citation

©2016 Pedro De-La-Torre et al., published by De Gruyter.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in