Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - New Crystal Structures

Editor-in-Chief: Huppertz, Hubert

Ed. by Reiß, Guido

6 Issues per year


IMPACT FACTOR 2016: 0.152

Cite Score 2016: 0.15

SCImago Journal Rank (SJR) 2016: 0.123
Source Normalized Impact per Paper (SNIP) 2016: 0.196

Open Access
Online
ISSN
2197-4578
See all formats and pricing
More options …
Volume 232, Issue 2
Loading journal volume and issue information...

Crystal structure of 1,1-dimethyl-3-(4-methylphenyl)urea, C10H14N2O

Gamal A. El-Hiti
  • Corresponding author
  • Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Keith Smith / Amany S. Hegazy / Benson M. Kariuki
Published Online: 2017-02-21 | DOI: https://doi.org/10.1515/ncrs-2016-0290

Abstract

C10H14N2O, monoclinic, Cc (no. 9), a = 6.8354(9) Å, b = 13.8221(17) Å, c = 10.2905(12) Å, β = 90.625(11)°, V = 972.2(2) Å3, Z = 4, Rgt(F) = 0.0526, wRref(F2) = 0.1335, T = 296(2) K.

This article offers supplementary material which is provided at the end of the article.

CCDC no.:: 1527333

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Source of material

The title compound was synthesised by reaction of equimolar quantities of 4-methylaniline and dimethylcarbamoyl chloride in dichloromethane at 40 °C for 1 h in the presence of excess triethylamine (1.38 mole equivalents). The crude product was recrystallized from a 1:3 mixture (by volume) of ethyl acetate and diethyl ether to give 1,1-dimethyl-3-(4-methylphenyl)urea (92%) as colourless crystals, Mp.: 141–142 °C (lit. 137–138 °C [1]; 152–153 °C [2]).

Experimental details

The crystal was twinned and the structure was refined using option HKL 5 of the SHELX program [18]. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C-H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C), and were allowed to spin about the C—C bond. Aromatic C-H distances were set to 0.93 Å and N-H to 0.86 Å and their Uiso set to 1.2 times the Ueq for the atoms to which they are bonded.

Discussion

Urea derivatives are important intermediates in medicinal chemistry [3], [4], [5]. Many convenient processes have been reported for the production of substituted ureas [6], [7], [8], [9], [10], [11]. Aromatic ureas can be substituted efficiently via lithiation chemistry [12], [13], [14], [15], [16].

The asymmetric unit consists of one molecule of C10H14N2O. The molecule is not planar as indicated by torsion angles C2—C1—N1—C8 = 13.1(5)° and N1—C8—N2—C10 = −12.2(5)°. N—H⋯O hydrogen bonds form chains of molecules along [001].

Acknowledgement

The project was supported by King Saud University, Deanship of Scientific Research, Research Chair.

References

  • 1

    Hutchby, M.: Novel Synthetic Chemistry of Ureas and Amides. Springer Thesis, Springer-Verlag, Berlin, Heidelberg, (2013). Google Scholar

  • 2

    Franz, R. A.; Applegath, F.; Morriss, F. V.; Breed, L. W.: The preparation of unsymmetrical ureas from carbon monoxide, sulfur, and amines. J. Org. Chem. 27 (1962) 4341–4346. Google Scholar

  • 3

    Kozikowski, A. P.; Zhang, J.; Nan, F.; Petukhov, P.; Grajkowska, A. E.; Wroblewski, J. T.; Yamamoto, T.; Bzdega, T.; Wroblewska, B.; Neale, J. H.: Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents. J. Med. Chem. 47 (2004) 1729–1738. Google Scholar

  • 4

    dos Santos, L.; Lima, L. A.; Cechinel-Filho, V.; Correa, R.; de Campos Buzzi, F.; Nunes, R. J.: Synthesis of new 1-phenyl-3-{4-[(2E)-3-phenylprop-2-enoyl]phenyl}-thiourea and urea derivatives with anti-nociceptive activity. Bioorg. Med. Chem. 16 (2008) 8526–8534. Google Scholar

  • 5

    Khan, K. M.; Saeed, S.; Ali, M.; Gohar, M.; Zhaid, J.; Khan, A.; Perveen, S.; Choudhary, M. I.: Unsymmetrically disubstituted urea derivatives: a potent class of antiglycating agents. Bioorg. Med. Chem. 17 (2009) 2447–2451. Google Scholar

  • 6

    Artuso, E.; Degani, I.; Fochi, R.; Magistris, C.: Preparation of mono-, di-, and trisubstituted ureas by carbonylation of aliphatic amines with S,S-dimethyl dithiocarbonate. Synthesis 39 (2007) 3497–3506. Google Scholar

  • 7

    Mizuno, T.; Nakai, T.; Mihara, M.: Synthesis of unsymmetrical ureas by sulfur-assisted carbonylation with carbon monoxide and oxidation with molecular oxygen under mild conditions. Synthesis 41 (2009) 2492–2496. Google Scholar

  • 8

    Wu, C.; Cheng, H.; Liu, R.; Wang, Q.; Hao, Y.; Yu, Y.; Zhao, F.: Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and. Solvent. Green Chem. 12 (2010) 1811–1816. Google Scholar

  • 9

    Vinogradova, E. V.; Fors, B. P.; Buchwald, S. L.: Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: a practical synthesis of unsymmetrical ureas. J. Am. Chem. Soc. 134 (2012) 11132–11135. Google Scholar

  • 10

    Carnaroglio, D.; Martina, K.; Palmisano, G.; Penoni, A.; Domini, C.; Cravotto, G.: One-pot sequential synthesis of isocyanates and urea derivatives via a microwave-assisted Staudinger–aza-Wittig reaction. Beilstein J. Org. Chem. 9 (2013) 2378–2386. Google Scholar

  • 11

    Thalluri, K.; Manne, S. R.; Dev, D.; Mandal, B.: Ethyl 2-cyano-2-(4-nitrophenylsulfonyloxyimino)acetate-mediated Lossen rearrangement: single-pot racemization-free synthesis of hydroxamic acids and ureas from carboxylic acids. J. Org. Chem. 79 (2014) 3765–3775. Google Scholar

  • 12

    Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Directed lithiation of N′-(2-(4-methoxyphenyl)ethyl)-N,N-dimethylurea and tert-butyl (2-(4-methoxyphenyl)ethyl)carbamate. Synthesis 46 (2014) 394–402. Google Scholar

  • 13

    Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Control of site of lithiation of 3-(aminomethyl)pyridine derivatives. Synthesis 45 (2013) 3426–3434. Google Scholar

  • 14

    Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Variation in the site of lithiation of 2-(2-methylphenyl)ethanamine derivatives. J. Org. Chem. 77 (2012) 11210–11215. Google Scholar

  • 15

    Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Lithiation and substitution of N′-(ω-phenylalkyl)-N,N-dimethylureas. Synthesis 44 (2012) 20139–2022. Google Scholar

  • 16

    Smith, K.; El-Hiti, G. A.; Hegazy, A. S.: Lateral lithiation of N′-(2-methylbenzyl)-N,N-dimethylurea and N-(2-methylbenzyl)pivalamide: Synthesis of tetrahydroisoquinolines. Synthesis 42 (2010) 1371–1380. Google Scholar

  • 17

    Agilent Technologies: CrysAlisPRO Software system, Agilent Technologies, Yarnton, England (2014). Google Scholar

  • 18

    Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122. Google Scholar

  • 19

    Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854. Google Scholar

About the article

Received: 2016-09-30

Accepted: 2017-01-13

Published Online: 2017-02-21

Published in Print: 2017-03-01


Citation Information: Zeitschrift für Kristallographie - New Crystal Structures, Volume 232, Issue 2, Pages 329–330, ISSN (Online) 2197-4578, ISSN (Print) 1433-7266, DOI: https://doi.org/10.1515/ncrs-2016-0290.

Export Citation

©2017 Gamal A. El-Hiti et al., published by De Gruyter.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in