Abstract
C23H17F2N5OS, monoclinic, P21/c (no. 14), a = 5.2272(4) Å, b = 26.7398(15) Å, c = 15.2645(10) Å, β = 97.726(7)°, V = 2114.2(2) Å3, Z = 4, Rgt(F) = 0.0547, wRref(F2) = 0.1371, T = 296(2) K.

Editor-in-Chief: Huppertz, Hubert
Ed. by Reiß, Guido
6 Issues per year
IMPACT FACTOR 2016: 0.152
Cite Score 2016: 0.15
SCImago Journal Rank (SJR) 2016: 0.123
Source Normalized Impact per Paper (SNIP) 2016: 0.196
C23H17F2N5OS, monoclinic, P21/c (no. 14), a = 5.2272(4) Å, b = 26.7398(15) Å, c = 15.2645(10) Å, β = 97.726(7)°, V = 2114.2(2) Å3, Z = 4, Rgt(F) = 0.0547, wRref(F2) = 0.1371, T = 296(2) K.
This article offers supplementary material which is provided at the end of the article.
CCDC no.:: 1533011

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.
Data collection and handling.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).
The title compound was synthesized from reaction of a mixture of 1:1 molar ratios of 5-(4-fluorophenyl)-3-(furan-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide and N′-(4-fluorophenyl)-2-oxopropanehydrazonoyl chloride in ethanol under reflux condition for 2 h. The solid obtained on cooling was recrystallized from dimethylformamide to give the title compound as orange crystals in 64% yield, Mp. 225–226 °C [1].
All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl, methylene and methine C—H bonds were fixed at 0.96 Å, 0.97 Å and 0.98 Å respectively. Displacement parameters were 1.5 times Ueq(C) for methyl groups and 1.2 times Ueq(C) for methylene and methine hydrogens. Methyl groups were allowed to spin about the C—C bond. Aromatic C—H distances were set to 0.93 Å and their Uiso set to 1.2 times Ueq(C).
Many pyrazolylthiazoles have been synthesized using different procedures and showed antinociceptive, anti-inflammatory and antimicrobial activities [2], [3], [4], [5], [6], [7], [8], [9], [10]. The X-ray crystal structures for related compounds have been published recently [11, 12].
The asymmetric unit consists of one molecule. In the molecule, the furan(A)-pyrazole(B)-thiazole(C)-fluorophenyl(D) ring system is almost planar. Thus the largest deviation from the least-squares plane through the four rings is 0.22(1) Å (by O1). The greatest difference between the planes through adjacent rings (A and B) is 7.1(2)°. The second fluorophenyl group (E) is almost perpendicular (85.0(5)°) to the A—B—C—D system. In the crystal, pairs of molecules related by an inversion centre interact through two edge-to-face interactions involving rings D and E with centroid-to-centroid distances of 5.3 Å. A short intermolecular O⋯O contact (2.84 Å) occurs between furan moieties of pairs of molecules related by inversion symmetry. Such contact is not unique, as shown by a search of the CSD [13] which gave 78 hits for contacts within the sum of van-der-Waals radii for furan oxygens.
The project was supported by King Saud University, Deanship of Scientific Research, Research Chair.
Abdel-Wahab, B. F.; Sediek, A.; Mohamed, H. A.; Awad, G. E. A.: Novel 2-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Lett. Drug Design Discov. 10 (2013) 111–118. Google Scholar
Prokopp, C. R.; Rubin, M. A.; Sauzem, P. D.; de Souza, A. H.; Berlese, D. B.; Lourega, R. V.; Muniz, M. N.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A.; Mello, C. F.: A pyrazolyl-thiazole derivative causes antinociception in mice. Braz. J. Med. Biol. Res. 39 (2006) 795–799. CrossrefGoogle Scholar
Donohue, B. A.; Michelotti, E. L.; Reader, J. C.; Reader, V.; Stirling, M.; Tice, C. M.: Design, synthesis, and biological evaluation of a library of 1-(2-Thiazolyl)-5-(trifluoromethyl)pyrazole-4-carboxamides. J. Comb. Chem. 4 (2002) 23–32. CrossrefGoogle Scholar
Khloya, P.; Kumar S.; Kaushik, P.; Surain, P.; Kaushik, D.; Sharma, P. K.: Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory–antimicrobial agents. Bioorg. Med. Chem. Lett. 25 (2015) 1177–1181. Web of ScienceCrossrefGoogle Scholar
Ye, L.; Knapp, J. M.; Sangwung, P.; Fettinger, J. C.; Verkman, A. S.; Kurth, M. J.: Pyrazolylthiazole as ΔF508-cystic fibrosis transmemberane conductance regulator correctors with improved hydrophilicity compared to bithiazoles. J. Med. Chem. 53 (2010) 3772–3781. CrossrefGoogle Scholar
Denisova, A. B.; Sosnovskikh, V. Y.; Dehaen, W.; Toppet, S.; Meervelt, L. V.; Bakulev, V. A.: The regioselectivity of the formation of 2-pyrazolylthiazoles and their precursors from the reaction of 2-hydrazinothiazoles with 4,4,4-trifluoro-1-hetaryl-1,3-butanediones. J. Fluorine Chem. 115 (2002) 183–192. CrossrefGoogle Scholar
Abdel-Wahab, B. F.; Mohamed, H. A.; Awad, G. E. A.: Synthesis and antimicrobial activity of some new 3-(4-fluorophenyl)benzo[g]indazoles and 1-pyrazolylthiazoles. Eur. Chem. Bull. 3 (2014) 1069–1074. Google Scholar
Salem, M. E.; Darweesh, A. F.; Mekky, A. E. M.; Farag, A. M.; Elwahy, A. H. M.: 2-Bromo-1-(1H-pyrazol-4-yl)ethanone: versatile precursor for novel mono- and bis [pyrazolylthiazoles]. J. Heterocycl. Chem. 54 (2017) 226–234. Google Scholar
Hassan, A. A.; Bebair, T. M.; El-Gamal, M. I.: Synthesis of pyrazolylthiazole and pyrazolyl-1,2,4-triazepine derivatives. J. Chem. Res. 38 (2014) 27–31. CrossrefWeb of ScienceGoogle Scholar
Mohamed, H. A.; Abdel-Latif, E.; Abdel-Wahab, B. F.; Awad, G. E. A.: Novel antimicrobial agents: fluorinated 2-(3-(benzofuran-2-yl) pyrazol-1-yl)thiazoles. Int. J. Med. Chem. 2013 (2013) Article ID 986536. doi: 10.1155/2013/986536. CrossrefGoogle Scholar
El-Hiti, G. A.; Abdel-Wahab, B. F.; Baashen, M.; Ghabbour, H. A.: Crystal structure of 2-(3-(benzofuran-2-yl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-(4-chlorophenyl)thiazole, C26H17ClFN3OS. Z. Kristallogr. - NCS 231 (2016) 911–912. Google Scholar
El-Hiti, G. A.; Abdel-Wahab, B. F.; Ajarim, M. D.; Alobaid, A. M.; Ghabbour, H. A.: Crystal structure of 2-(3-(benzofuran-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenylthiazole, C26H19N3OS. Z. Kristallogr. - NCS 231 (2016) 935–936. Google Scholar
Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C.: The Cambridge Structural Database. Acta Crystallogr. B72 (2016) 171–179. Google Scholar
Agilent. CrysAlisPRO. Agilent Technologies, Yarnton, England (2014). Google Scholar
Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008). 112–122. Web of ScienceGoogle Scholar
Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012). 849–854. CrossrefWeb of ScienceGoogle Scholar
Received: 2016-10-03
Accepted: 2017-02-16
Published Online: 2017-03-18
Published in Print: 2017-05-24
Citation Information: Zeitschrift für Kristallographie - New Crystal Structures, Volume 232, Issue 3, Pages 413–415, ISSN (Online) 2197-4578, ISSN (Print) 1433-7266, DOI: https://doi.org/10.1515/ncrs-2016-0293.
©2017 Gamal A. El-Hiti et al., published by De Gruyter, Berlin/Boston. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0
Comments (0)