Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Kristallographie - New Crystal Structures

Editor-in-Chief: Huppertz, Hubert

Editorial Board: Hübschle, Christian / Janka, Oliver / Lemmerer, Andreas / Reiß, Guido / Tiekink, Edward R.T.


IMPACT FACTOR 2018: 0.290

Cite Score 2018: 0.31

SCImago Journal Rank (SJR) 2018: 0.152
Source Normalized Impact per Paper (SNIP) 2018: 0.231

Open Access
Online
ISSN
2197-4578
See all formats and pricing
More options …
Volume 234, Issue 2

Issues

Crystal structure of dimethyl (3aS,6R,6aS,7S)-2-pivaloyl-2,3-dihydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline-3a1,6a-dicarboxylate, C21H25NO8

Pavel V. Dorovatovskii / Nurlana D. Sadigova
  • Organic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az, 1148 Baku, Azerbaijan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alakbar E. Huseynzada
  • Organic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az, 1148 Baku, Azerbaijan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sarvinaz F. Hajiyeva
  • Organic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az, 1148 Baku, Azerbaijan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro Cárdenas
  • Departamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonathan Cisterna
  • Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iván Brito
  • Corresponding author
  • Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-30 | DOI: https://doi.org/10.1515/ncrs-2018-0192

Abstract

C21H25NO8 , P21/n, (no. 14), a = 12.905(3) Å, b = 13.370(3) Å, c = 13.090(3) Å, β = 118.19(3)°, V = 1990.5(8) Å3, Z = 4, Rgt(F) = 0.0629, wRref(F2) = 0.1966, T = 100(2) K.

This article offers supplementary material which is provided at the end of the article.

CCDC no.: 1873703

Table 1:

Data collection and handling.

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Source of material

Synthesis and characterization by 1H/13C NMR, IR and HRMS methods was reported in [10], [11].

Experimental details

H atoms were located in the difference Fourier map, but refined with fixed individual displacement parameters, using a riding model with C—H distances of 0.95–1.0 Å (for aromatic rings), and C—H distances 0.99, 0.98 Å for methylene nd methyl groups, with U(H) values of 1.2Ueq(CAr and CH2) and 1.5Ueq(C) (for CH3).

Comment

Weak interactions, such as hydrogen, halogen, chalcogen, pnicogen, tetrel and icosagen bonds were extensively used in the synthesis, catalysis, crystal engineering, drug delivery, etc. [1], [2], [3], [4], [5]. Among those, hydrogen bonding has turned out to be particularly suitable for design of organic and coordination compounds [6], [7], [8], [9]. There is one title molecule in the asymmetric unit.

The molecule comprises a fused hexacyclic system containing four five-membered rings in the usual envelope conformations with Cremer and Pople parameters [12] ranging from (Q(2) = 0.517(3)–0.583(3) Å; φ2 = 175.2(3)–181.4(4)°) and one six-membered rings adopting a chair conformation with Cremer and Pople parameters Q = 0.523(3) Å, θ = 6.8(3)°, φ = 52(3)° respectively. In the crystal structure the molecules are linked at least by C—O⋯H intermolecular hydrogen bond which link molecules into centrosymmetric dimers with R22(10) graph-set notation [13]. Other weak intermolecular interactions will contibute to the stability of the packing. The carboxylate groups are α-oriented, meanwhile, the tert-butyl carboxylate group is β-oriented. All distances and angles are normal.

Acknowledgements

X-ray crystallographic studies using synchrotron radiation were performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007). This work has also been partially supported by Universidad de Antofagasta, and Baku State University.

References

  • 1.

    Kvyatkovskaya, E. A.; Zaytsev,V.; Zubkov, F. I.; Dorovatovskii, P. V.; Zubavichus, Y. V.; Khrustalev, V. N.: Interaction between maleic acid andN-R-furfurylamines: crystal structure of 2-methyl-N-[(5-phenylfuran-2-yl)methyl]propan-2-aminium (2Z)-3-carboxyacrylate andN-[(5-iodofuran-2-yl)methyl]-2-methylpropan-2-aminium (2Z)-3-carboxyprop-2-enoate. Acta Crystallogr. E73 (2017) 515–519. Google Scholar

  • 2.

    Shixaliyev, N. Q.; Ahmadova, N. E.; Gurbanov, A. V.; Maharramov, A. M.; Mammadova, G. Z.; Nenajdenko, V. G.; Zubkov, F. I.; Mahmudov, K. T.; Pombeiro, A. J. L.: Tetrel, halogen and hydrogen bonds in bis(4-((E)-(2,2-dichloro-1-(4-substitutedphenyl)vinyl)diazenyl)phenyl)methane dyes. Dyes Pigments 150 (2018) 377–381. Web of ScienceCrossrefGoogle Scholar

  • 3.

    Nasirova, D. K.; Malkova, A. V.; Polyanskii, K. B.; Yankina, K. Y.; Amoyaw, P. N.-A.; Kolesnik, I. A.; Kletskov, A. V.; Godovikov, I. A.; Nikitina, E. V.; Zubkov, F. I.: Rearrangement of 2-azanorbornenes to tetrahydrocyclopenta [c]pyridines under the action of activated alkynes – a short pathway for construction of the altemicidin core. Tetrahedron Lett. 58 (2017) 4384–4387. CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Vandyshev, D. Y.; Shikhaliev, K. S.; Potapov, A. Y.; Krysin, M. Y.; Zubkov, F. I.; Sapronova, L. V.: A novel synthetic approach to hydroimidazo[1,5-b]pyridazines by the recyclization of itaconimides and HPLC–HRMS monitoring of the reaction pathway. Beilstein J. Org. Chem. 13 (2017) 2561–2568. CrossrefWeb of ScienceGoogle Scholar

  • 5.

    Shetne, V. A. A.; Zubkov, F. I.: The latest advances in chemistry of 1,2,4-oxadiazines. Chem. Heterocyclic Compd. 53 (2017) 495–497. CrossrefGoogle Scholar

  • 6.

    Desiraju, G. R.: Supramolecular synthons in crystal engineering—a new organic synthesis. Angew. Chem. Int. Ed. 34 (1995) 2311–2327. CrossrefGoogle Scholar

  • 7.

    Mahmudov, K. T.; Pombeiro, A. J. L.: Resonance–assisted hydrogen bonding as a driving force in synthesis and a synthon in the design of materials. Chem. Eur. J. 22 (2016) 16356–16398. CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Mahmudov, K. T.; Kopylovich, M. N.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L.: Non-covalent interactions in the synthesis of coordination compounds: recent advances. Coord. Chem. Rev. 345 (2017) 54–72. Web of ScienceCrossrefGoogle Scholar

  • 9.

    Hazra, S.; Martins, N. M. R.; Mahmudov, K. T.; Zubkov, F. I.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L.: A tetranuclear diphenyltin(IV) complex and its catalytic activity in the aerobic BaeyerVilliger oxidation of cyclohexanone. J. Organomet. Chem. 867 (2018) 193–200. CrossrefGoogle Scholar

  • 10.

    Borisova, K. K.; Kvyatkovskaya, E. A.; Nikitina, E. V.; Aysin, R. R.; Novikov, R. A.; Zubkov, F. I.: Classical example of total kinetic and thermodynamic control: the Diels–Alder reaction between DMAD and bis-furyl dienes. J. Org. Chem. 83 (2018) 4840–4850. CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Borisova, K. K.; Nikitina, E. V.; Novikov, R. A.; Khrustalev, V. N.; Dorovatovskii, P. V.; Zubavichus, Y. V.; Kuznetsov, M. L.; Zaytsev, V. P.; Varlamov, A. V.; Zubkov, F. I.: Diels–Alder reactions between hexafluoro-2-butyne and bis-furyl dienes: kinetic versus thermodynamic control. Chem. Commun. 54 (2018) 2850–2853. CrossrefWeb of ScienceGoogle Scholar

  • 12.

    Cremer, D.; Pople, J. A.: General definition of ring puckering coordinates. J. Am. Chem. Soc. 97 (1975) 1354–1358. CrossrefGoogle Scholar

  • 13.

    Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L.: Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 34 (1995) 1555–1573. CrossrefGoogle Scholar

  • 14.

    Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–341. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-06-01

Accepted: 2018-10-17

Published Online: 2018-10-30

Published in Print: 2019-03-26


Citation Information: Zeitschrift für Kristallographie - New Crystal Structures, Volume 234, Issue 2, Pages 205–207, ISSN (Online) 2197-4578, ISSN (Print) 1433-7266, DOI: https://doi.org/10.1515/ncrs-2018-0192.

Export Citation

©2019 Pavel V. Dorovatovskii et al., published by De Gruyter, Berlin/Boston. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in