Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Neuroforum

Organ der Neurowissenschaftlichen Gesellschaft

Editor-in-Chief: Luhmann, Heiko

4 Issues per year

Online
ISSN
1868-856X
See all formats and pricing
More options …
Volume 23, Issue 2

Issues

Apollos Gift and Curse: Making Music as a model for Adaptive and Maladaptive Plasticity

Eckart Altenmüller
  • Corresponding author
  • Director, Institute of Music Physiology and Musicians’ Medicine (IMMM), University of Music, Drama and Media, Hanover, Emmichplatz 1, D-30175 Hannover, Phone: 0049 (0) 511 3100 552, Fax: 0049 (0) 511 3100 557, Web: www.immm.hmtm-hannover.de Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shinichi Furuya
  • Associate Researcher, SONY Computer Science Laboratory (SONY CSL), Tokyo, Tel: +49-511-3100552, Fax: +49-511-3100557, Web: www.neuropiano.net JAPAN
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-16 | DOI: https://doi.org/10.1515/nf-2016-A054

Abstract

Musicians with extensive training and playing experience provide an excellent model for studying plasticity of the human brain. The demands placed on the nervous system by music performance are very high and provide a uniquely rich multisensory and motor experience to the player. As confirmed by neuroimaging studies, playing music depends on a strong coupling of perception and action mediated by sensory, motor, and multimodal integration regions distributed throughout the brain. A pianist, for example, must draw on a whole set of complex skills, including translating visual analysis of musical notation into motor movements, coordinating multisensory information with bimanual motor activity, developing fine motor skills in both hands coupled with metric precision, and monitoring auditory feedback to fine-tune a performance as it progresses. This article summarizes research on the effects of musical training on brain function, brain connectivity and brain structure. First we address factors inducing and continuously driving brain plasticity in dedicated musicians, arguing that prolonged goal-directed practice, multi-sensory-motor integration, high arousal, and emotional and social rewards contribute to these plasticity-induced brain adaptations. Subsequently, we briefly review the neuroanatomy and neurophysiology underpinning musical activities. Here we focus on the perception of sound, integration of sound and movement, and the physiology of motor planning and motor control. We then review the literature on functional changes in brain activation and brain connectivity along with the acquisition of musical skills, be they auditory or sensory-motor. In the following section we focus on structural adaptions in the gray matter of the brain and in fiber-tract density associated with music learning. Here we critically discuss the findings that structural changes are mostly seen when starting musical training after age seven, whereas functional optimization is more effective before this age. We then address the phenomenon of de-expertise, reviewing studies which provide evidence that intensive music-making can induce dysfunctional changes which are accompanied by a degradation of skilled motor behavior, also termed “musician’s dystonia”. This condition, which is frequently highly disabling, mainly affects male classical musicians with a history of compulsive working behavior, anxiety disorder or chronic pain. Functional and structural brain changes in these musicians are suggestive of deficient inhibition and excess excitation in the central nervous system, which leads to co-activation of antagonistic pairs of muscles during performance, reducing movement speed and quality. We conclude with a concise summary of the role of brain plasticity, metaplasticity and maladaptive plasticity in the acquisition and loss of musicians’ expertise.

Keywords: MUSIC; Brain activation; Brain structure; Metaplasticity; Musician’s dystonia

References

  • Altenmüller, E. (2003). Focal dystonia: Advances in brain imaging and understanding of fine motor control in musicians. Hand Clinics. 19, 523–538. CrossrefGoogle Scholar

  • Altenmüller, E., Furuya S. (2016). Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians. Adv. Exp. Med. Biol. 2016; 957: 197–208Google Scholar

  • Altenmüller, E., Ioannou, C.I., Lee, A. (2015). Apollo’s curse: neurological causes of motor impairments in musicians. Prog Brain Res. 217, 89–106. doi: 10.1016/bs.pbr.2014.11.022. CrossrefGoogle Scholar

  • Amunts, K., Zilles, K. (2015). Architectonic Mapping of the Human Brain beyond Brodmann. Neuron. 88, 1086–107. doi: 10.1016/j.neuron.2015.12.001. Review. CrossrefGoogle Scholar

  • Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Hum. Brain Mapp. 5, 206–215.CrossrefGoogle Scholar

  • Auerbach, S. (1906). Zur Lokalisation des musicalischen Talentes im Gehirn und am Schädel. Archives of Anatomy and Physiology, 1906, 197–230; 1908, 31–8; 1911, 1–10; 1913 (Suppl), 89–96Google Scholar

  • Baharloo, S., Johnston, P.A., Service, S.K., Gitschier, J., Freimer, N.B., (1998). Absolute pitch: An approach for identification of genetic and nongenetic components. The American Journal of Human Genetics. 62, 224–231.CrossrefGoogle Scholar

  • Baharloo, S., Service, S.K., Risch, N., Gitschier, J., Freimer, N.B., (2000). Familial aggregation of absolute pitch. The American Journal of Human Genetics. 67, 755–758.CrossrefGoogle Scholar

  • Bangert, M. and Altenmüller, E. (2003). Mapping perception to action in piano practice: a longitudinal DC-EEG-study. BMC Neuroscience. 4, 26–36.CrossrefGoogle Scholar

  • Bangert, M., Schlaug, G., (2006). Specialization of the spezialized in features of external brain morphology. Eur. J. Neurosci. 24, 1832–1834.CrossrefGoogle Scholar

  • Bangert, M., Peschel, T., Rotte, M., Drescher, D., Hinrichs, H., Schlaug, G., Heinze, HJ., & Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage. 30, 917–26. CrossrefGoogle Scholar

  • Battistella, G., Termsarasab, P., Ramdhani, R.A., Fuertinger. S., Simonyan, K. (2015). Isolated Focal Dystonia as a Disorder of Large-Scale Functional Networks Cerebral Cortex. 26, 1–13. Google Scholar

  • Baur, V., Jabusch, H.C., Altenmüller, E. (2011). Behavioral factors influence the phenotype of musician’s dystonia. Mov. Disord. 26, 1780–1781.CrossrefGoogle Scholar

  • Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150.CrossrefGoogle Scholar

  • Bermudez, P., Lerch, J.P., Evans, A.C., & Zatorre, R.J. (2008). Neuroanatomical correlates of musicianship as revealed by Cortical Thickness and Voxel-Based Morphometry. Cereb. Cortex. 19, 1583–1596. CrossrefGoogle Scholar

  • Brown, R.M., Chen, J.L., Hollinger, A., Palmer, C., Penhune, V., and Zatorre, R.J. (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience. 25, 313–328.CrossrefGoogle Scholar

  • Brown, R.M., Penhune, V.B. and Zatorre, R. (2015). Expert music performance: cognitive, neural, and developmental bases. Progress in Brain Research. 217, 57–86.Google Scholar

  • Byl, N.N., Merzenich, M.M., Jenkins, W.M. (1996). A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology. 47, 508–520.CrossrefGoogle Scholar

  • Chen, J.L., Penhune, V.B., Zatorre, R.J. (2008a). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience. 20, 226–239.CrossrefGoogle Scholar

  • Chen, J.L., Penhune, V.B., Zatorre, R.J. (2008b). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex. 18, 2844–54.CrossrefGoogle Scholar

  • Corrigall, K. A., Schellenberg, E.G., Misura, N.M. (2013). Music training, cognition, and personality. Frontiers in Psychology. 4, 222.CrossrefGoogle Scholar

  • De Manzano, Ö. and Ullén, F. (2012). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage, 63, 272–280.CrossrefGoogle Scholar

  • Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science. 270(5234), 305–307.Google Scholar

  • Elbert, T., Candia, V., Altenmüller, E., Rau, H., Rockstroh, B., Pantev, C., Taub, E. (1998). Alteration of digital representations in somatosensory cortex in focal hand dystonia. NeuroReport 16, 3571–3575. CrossrefGoogle Scholar

  • Ellis, R. J., Norton, A., Overy, K., Winner, E., Alsop, D., & Schlaug, G. (2013). Differentiating maturational and training influences on fMRI activation during music processing. Neuroimage. 75, 97–107.CrossrefGoogle Scholar

  • Ericsson, K.A. and Lehmann, A.C. (1996). Expert and exceptional performance: evidence of maximal adaptation to task constraints. Annual Review of Psychology. 47, 273–305.CrossrefGoogle Scholar

  • Ericsson, K.A., Krampe, R.T., Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100, 363–406.CrossrefGoogle Scholar

  • Foster, N.E. and Zatorre, R.J. (2010). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex. 20, 1350–1359.CrossrefGoogle Scholar

  • Furuya, S. and Altenmüller, E. (2013a). Flexibility of movement organization in piano performance. Frontiers in Human Neuroscience. 7, 173.CrossrefGoogle Scholar

  • Furuya, S. and Altenmüller, E. (2013b). Finger-specific loss of independent control of movements in musicians with focal dystonia. Neuroscience. 247, 152–163.Google Scholar

  • Furuya, S., Klaus, M., Nitsche, M.A., Paulus, W. and Altenmüller, E. (2014a). Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. Journal of Neuroscience. 34, 13834–13839.CrossrefGoogle Scholar

  • Furuya, S., Nitsche, M.A., Paulus, W. and Altenmüller, E. (2014b). Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Annals of Neurology. 75, 700–707.CrossrefGoogle Scholar

  • Furuya, S., Oku, T., Miyazaki, F., Kinoshita, H. (2015). Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians. Sci Rep 5, 15750 doi: 10.1038/srep15750. CrossrefGoogle Scholar

  • Gärtner, H., Minnerop, M., Pieperhoff, P., Schleicher, A., Zilles, K., Altenmüller, E., Amunts, K., 2013. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players. Front. Psychol. 4, doi: 10.3389/fpsyg.2013.00636. CrossrefGoogle Scholar

  • Gaab, N., Gaser, C., & Schlaug, G. (2006). Improvement-related functional plasticity following pitch memory training. Neuroimage. 31(1), 255–263.CrossrefGoogle Scholar

  • Gaser, C. & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. J. Neurosci. 23(27),9240–9245.Google Scholar

  • Gentner, R. and Classen, J. (2006). Modular organization of finger movements by the human central nervous system. Neuron. 52, 731–742.CrossrefGoogle Scholar

  • Granert, O., Peller, M., Jabusch, H.C., Altenmüller, E., Siebner, H.R. (2011). Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J. Neurol. Neurosurg. Psychiatry. 82, 1225–1231. CrossrefGoogle Scholar

  • Gregersen, P.K., Kowalsky, E., Kohn, N., Marvin, E.W., (2001). Early childhood music education and predisposition to absolute pitch: Teasing apart genes and environment. American Journal of Medical Genetics. 98, 280–282.CrossrefGoogle Scholar

  • Gingras, B., Honing, H., Peretz, I., Trainor, L.J., Fisher, S.E. (2015). Defining the biological bases of individual differences in musicality. Philos Trans R Soc Lond B Biol Sci. 370, 20140092. doi: 10.1098/rstb.2014.0092. CrossrefGoogle Scholar

  • Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Front Psychol. 2, 156.CrossrefGoogle Scholar

  • Haslinger, B., Altenmüller, E., Castrop, F., Zimmer, C., Dresel, C. (2010). Sensorimotor overactivity as a pathophysiologic trait of embouchure dystonia. Neurology 74, 1790–1797. CrossrefGoogle Scholar

  • Haslinger, B., Erhard, P., Altenmüller, E., Schroeder, U., Boecker, H. and Ceballos-Baumann, A.O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience. 17, 282–293.CrossrefGoogle Scholar

  • Henry, D.E., Chiodo, A. E., Yang, W. (2011). Central nervous system reorganization in a variety of chronic pain states: a review. PM R. 2011 Dec;3(12):1116–25. doi: 10.1016/j.pmrj.2011.05.018. CrossrefGoogle Scholar

  • Herholz, S.C., and Zatorre, R.J., (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron. 76, 486–502.CrossrefGoogle Scholar

  • Herholz, S.C., Coffey, E.B., Pantev, C., Zatorre, R.J. (2016). Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning. Cereb Cortex. 26, 3125–34. doi: 10.1093/cercor/bhv138. CrossrefGoogle Scholar

  • Herrojo-Ruiz, M., Jabusch, H.C., Altenmüller, E. (2009a). Detecting wrong notes in advance: Neuronal correlates of error monitoring in pianists. Cerebral Cortex. 19, 2625–2639.CrossrefGoogle Scholar

  • Herrojo-Ruiz, M., Senghaas, P., Grossbach, M., Jabusch, H.C., Bangert, M., Hummel, F., Gerloff, C., Altenmüller E. (2009b). Defective inhibition and inter-regional phase synchronization in pianists with musician’s dystonia (MD): an EEG study. Human Brain Mapping 30, 2689–2700. CrossrefGoogle Scholar

  • Hikosaka, O. and Nakamura, K. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12, 217–222.CrossrefGoogle Scholar

  • Hirata, Y., Kuriki, S., Pantev, C. (1999). Musicians with absolute pitch show distinct neural activities in the auditory cortex. NeuroReport, 10, 999–1002.CrossrefGoogle Scholar

  • Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. J. Neurosci. 29, 3019–3025.CrossrefGoogle Scholar

  • Imfeld, A., Oechslin, M. S., Meyer, M., Loenneker, T., & Jäncke, L. (2009). White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. Neuroimage. 46, 600–607.CrossrefGoogle Scholar

  • Ioannou, C.I. and Altenmüller, E. (2014). Psychological characteristics in musician’s dystonia: A new diagnostic classification. Neuropsychol. 61, 80–88. CrossrefGoogle Scholar

  • Ioannou, C.I., Furuya, S., Altenmüller, E. (2016). The impact of stress on motor performance in skilled musicians suffering from focal dystonia: Physiological and psychological characteristics. Neuropsychologia 85, 226–36. doi: 10.1016/j.neuropsychologia.2016.03.029. CrossrefGoogle Scholar

  • Jabusch, H.C., Altenmüller, E. (2004). Anxiety as an aggravating factor during onset of focal dystonia in musicians. Med. Probl. Perf. Art., 19, 75–81. Google Scholar

  • Jabusch, H.C., Müller, S.V., Altenmüller, E., (2004). High levels of perfectionism and anxiety in musicians with focal dystonia. Mov. Disord., 19, 990–991. Google Scholar

  • James, C. E., Oechslin, M. S., Van De Ville, D., Hauert, C.-A., Descloux, C., & Lazeyras, F. (2013). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct. Funct. 219, 53–66. doi: 10.1007/s00429-013-0504-z. CrossrefGoogle Scholar

  • Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., Lotze, M. (2010). The brain of opera singers: Experience-dependent changes in functional activation. Cerebral Cortex. 20, 1144–1152.CrossrefGoogle Scholar

  • Krampe, R. and Ericsson, K., (1996). Maintaining excellence: Deliberate practice and elite performance in young and older pianists. Journal of Experimental Psychology: General. 125, 331–359.CrossrefGoogle Scholar

  • Kuhtz-Buschbeck, J.P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S. and Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study. European Journal of Neuroscience. 18, 3375–3387.CrossrefGoogle Scholar

  • Lahav, A., Saltzman, E., Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience. 27, 308–314.CrossrefGoogle Scholar

  • Lee, A., Heiß, P., Eich, C., Ioannou, I.C., Altenmüller, E. (2017, noch nicht erschienen) Phenomenology, risk-factors and treatment outcome in 369 musicians with focal dystonia. Submitted to Clin Mov Disord.Google Scholar

  • Lehmann, A.C. Ericsson, K. A. (1998). The historical development of expert performance: public performance of music. In: A. Steptoe (Ed.) Genius and the Mind. Oxford University Press, Oxford, 67–97Google Scholar

  • Lim, V., Altenmüller, E. (2003). Musicians cramp: Instrumental and gender differences. Med. Probl. Perform. Art., 18, 21–27. Google Scholar

  • Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2010). Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity. J Cogn Neurosci. 54, 521–528.Google Scholar

  • Meinz, E.J. (2000). Experience-based attenuation of age-related differences in music cognition tasks. Psychol Aging 15, 297–312. CrossrefGoogle Scholar

  • Mosing, M.A., Madison, G., Pedersen, N.L., Kuja-Halkola, R., Ullen, F., (2014). Practice does not make perfect: No causal effect of music practice on music ability. Psychological Science. 43, 1–9.Google Scholar

  • Münte, T.F., Kohlmetz, C., Nager, W., Altenmüller, E. (2001) Superior auditory spatial tuning in professional conductors. Nature 409: 580.Google Scholar

  • Münte, T.F., Nager, W., Beiss, T., Schroeder, C., Altenmüller, E. (2003). Specialization of the specialized: electrophysiological investigations in professional musicians. Ann. N.Y. Acad. Sci. 999, 131–139. Google Scholar

  • Miyazaki, K. (1988). Musical pitch identification by absolute pitch possessors. Perception & Psychophysics, 44, 501–512.CrossrefGoogle Scholar

  • Oechslin, M. S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. 2010. The plasticity of the superior longitudinal fasciculus as a funtion of musical expertise: a diffusion tensor imaging study. Front. Hum. Neurosci. 3(76):1–12.CrossrefGoogle Scholar

  • Oztürk, A. H., Tascioglu, B., Aktekin, M., Kurtoglu, Z., & Erden, I. (2002). Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology. 29, 29–34.Google Scholar

  • Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811–814.Google Scholar

  • Pantev, C., Engelien, A., Candia, V., & Elbert, T. (2001). Representational cortex in musicians. Plastic alterations in response to musical practice. Ann. N.Y. Acad. Sci. 930, 300–314.Google Scholar

  • Pascual-Leone, A. (2001). The brain that plays music and is changed by it. Ann. N. Y. Acad. Sci. 930, 315–329.Google Scholar

  • Pascual-Leone, A., Grafman, J., Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science. 263, 1287–1289.Google Scholar

  • Paulig, J., Jabusch, H.C., Großbach, M., Boullet, L., Altenmüller, E. (2014). Sensory trick phenomenon improves motor control in pianists with dystonia: Prognostic value of glove-effect. Front. Psychol. 5, 1012. Doi: 10.3389/fpsyg.2014.01012CrossrefGoogle Scholar

  • Ragert, P., Schmidt, A., Altenmüller, E., & Dinse, H. R. (2003). Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur. J. Neurosci. 19(2),473–478.CrossrefGoogle Scholar

  • Ramnani, N. (2014). Automatic and controlled processing in the corticocerebellar system. Progress in Brain Research. 210, 255–85.Google Scholar

  • Ridding, M.C., Brouwer, B., Nordstrom, M.A. (2000). Reduced interhemispheric inhibition in musicians. Exp. Brain Res. 133, 249–253.Google Scholar

  • Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res. 1996 Mar; 3(2):131–141.CrossrefGoogle Scholar

  • Rosenkranz, K., Altenmüller, E., Siggelkow, S., Dengler, R. (2000). Alteration of sensorimotor integration in musician’s cramp: Impaired focussing of proprioception. Electroenc Clin Neurophysiol 111, 2036–2041. Google Scholar

  • Rosenkranz, K., Williamon, A., Butler, K., Cordivari, C., Lees, A. J., Rothwell, J. C. (2005). Pathophysiological differences between musician’s dystonia and writer’s cramp. Brain, 128, 918–931. Google Scholar

  • Salimpoor, V.N., van den Bosch, I., Kovacevic, N., McIntosh, A.R., Dagher, A., Zatorre, R.J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219. doi: 10.1126/science.1231059. CrossrefGoogle Scholar

  • Schlaug, G. (2001). The brain of musicians: A model for functional and structural plasticity. Annals of the New York Academy of Sciences. 930, 281–299.Google Scholar

  • Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Prog Brain Res. 217, 37–55. doi: 10.1016/bs.pbr.2014.11.020. CrossrefGoogle Scholar

  • Schlaug, G., Jäncke, L., Huang, Y., & Steinmetz, H. (1995a). In vivo evidence of structural brain asymmetry in musicians. Science. 267 (5198), 699–701.Google Scholar

  • Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. 1995b. Increased corpus callusum size in musicians. Neuropsychologia. 33, 1047–1055.CrossrefGoogle Scholar

  • Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience. 5, 688–694.CrossrefGoogle Scholar

  • Schneider, P., Sluming, V., Roberts, N., Scherg, M., Goebel, R., Specht, H. J., Dosch HG, Bleeck S, Stippich C, Rupp A. (2005). Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nature Neuroscience. 8, 1241–1247.CrossrefGoogle Scholar

  • Schmidt, A., Jabusch, H.C., Altenmüller, E., Hagenah, J., Brüggemann, N., Lohmann, K., Enders, L., Kramer, P.L., Saunders-Pullman, R., Bressman, S.B., Münchau, A., Klein, C. (2009). Etiology of musicians dystonia: Familial or environmental? Neurology. 72, 1248–1254.CrossrefGoogle Scholar

  • Schmidt, A., Jabusch, H.C., Altenmüller, E., Kasten, M., Klein, C. (2013). Challenges of making music: What causes musician’s dystonia? JAMA Neurol. 70, 1456–1459. CrossrefGoogle Scholar

  • Sergeant, D., (1968). Experimental investigation of absolute pitch. Journal of Research in Music Education, 17, 135–143.Google Scholar

  • Skoe, E., Kraus, N. (2013). Musical training heightens auditory brainstem function during sensitive periods in development. Frontiers in Psychology. 4, 622.CrossrefGoogle Scholar

  • Sommer, M., Ruge, D., Tergau, F., Beuche, W., Altenmüller, E., Paulus, W. (2002). Spatial distribution of intracortical inhibition and facilitation in focal dystonia. Mov. Disord. 17, 1017–1025. CrossrefGoogle Scholar

  • Steele, C. J., Bailey, J. A., Zatorre, R. J., Penhune, V.B. (2013). Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. J. Neurosci. 33, 1282–1290. CrossrefGoogle Scholar

  • Stewart, L., Henson, R., Kampe, K., Walsch, V., Turner, R., Frith, U. (2003). Brain changes after learning to read and play music. Neuroimage. 20, 71–83.CrossrefGoogle Scholar

  • Strübing, F., Ruiz, M.H., Jabusch, H.C., Altenmüller, E. (2012). Error monitoring is altered in musician’s dystonia: evidence from ERP-based studies. Ann. N.Y. Acad. Sci. 1252, 192–199 Google Scholar

  • Termsarasab, P., Ramdhani, R. A., Battistella, G., Rubien-Thomas, E., Choy, M., Farwell, I. M., Simonyan, K. (2015). Neural correlates of abnormal sensory discrimination in laryngeal dystonia. Neuroimage Clin, 10, 18–26.CrossrefGoogle Scholar

  • van Vugt, F.T., Boullet, L., Jabusch, H.C, Altenmüller E. (2014). Musician’s dystonia in pianists: Long-term evaluation of retraining and other therapies. Parkinsonism Rel. Disord. 20, 8–12.Google Scholar

  • Vaquero, L., Hartmann, K., Ripolles, P., Rojo, N., Sierpowska, J., François, C., Càmara, E., van Vugt, F.T., Mohammadi, B., Samii, A., Münte, T.F., Rodríguez-Fornells, A., Altenmüller, E. (2016) Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage 126, 106–119 doi: 10.1016/j.neuroimage.2015.11.008. CrossrefGoogle Scholar

  • Warren, J. E., Wise, R. J., Warren, J. D. (2005). Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci. 28, 636–643.CrossrefGoogle Scholar

  • Wong, P.C.M., Skoe, E., Russo, N.M., Dees, T., Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience. 10, 420–422. Google Scholar

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory – motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558. CrossrefGoogle Scholar

About the article

Eckart Altenmüller

Eckart Altenmüller is a full university professor and medical doctor, and has an active research and concert career. He graduated in Medicine and in Music at the University of Freiburg, where he obtained is concert diploma in the master classes of Aurèle Nicolèt and William Bennett. His clinical training was in the Department of Neurology in Freiburg and Tübingen as a neurologist and neurophysiologist. In 1994, he became Chair and Director of the Institute of Music Physiology and Musicians’ Medicine at Hannover University of Music, Drama and Media. In this role, he has continued his research into sensory-motor learning and movement disorders in musicians, into emotional processes while listening to music and into neurologic music therapy.

Shinichi Furuya

Prof. Dr. Shinichi Furuya is an associate professor of Department of Information and Communication Sciences at Sophia University, and holds a position as a guest professor at Institute for Music Physiology and Musician’s Medicine at Hannover University of Music, Drama and Media. He studied Mechanical Engineering at School of Engineering Science at Osaka University (BSc), Biomechanics at Graduate School of Human Science at Osaka University (MS), and Motor Neuroscience at Graduate School of Medicine at Osaka University (PhD). He then worked as a postdoctoral associate at Kwansei Gakuin University (Japan), University of Minnesota (USA), and Hannover University of Music, Drama and Media (Germany). His research interest is neuromuscular mechanisms subserving acquisition, sophistication, loss, and restoration of sensorimotor skills in musicians.


Published Online: 2017-05-16

Published in Print: 2017-05-24


Citation Information: e-Neuroforum, Volume 23, Issue 2, Pages 57–75, ISSN (Online) 1868-856X, DOI: https://doi.org/10.1515/nf-2016-A054.

Export Citation

© 2017 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in