Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Organ der Neurowissenschaftlichen Gesellschaft

Editor-in-Chief: Wahle, Petra

CiteScore 2017: 0.02

SCImago Journal Rank (SJR) 2017: 0.105
Source Normalized Impact per Paper (SNIP) 2017: 0.007

See all formats and pricing
More options …
Volume 25, Issue 1


Fight or flee? Lessons from insects on aggression

Dr. Jan Rillich
  • Corresponding author
  • Universität Leipzig, Fakultät fürLebenswissenschaften, Institut für Biologie, Talstr. 33, 04103 Leipzig, Deutschland Tel Tel.: +49 341 9736988 Leipzig Deutschland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Prof. Dr. Paul A. Stevenson
  • Corresponding author
  • Universität Leipzig, Fakultät fürLebenswissenschaften, Institut für Biologie, Talstr. 33, 04103 Leipzig, Deutschland Tel +49 341 973 6879 Leipzig Deutschland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-08 | DOI: https://doi.org/10.1515/nf-2017-0040


Aggression between members of the same species serves to secure resources, but the costs can quickly outweigh benefits. Hence, for aggression to be evolutionarily adaptive, animals must decide when best to flee, rather than fight. How its done, is arguably best understood in crickets. These insects implement the decision by simply modulating the behavioural threshold to flee. This threshold is raised by potentially rewarding experiences (e. g. resource possession), via the amine octopamine, so that the animal is less prone to flee and persists longer in fighting. Conversely, the threshold is lowered by nitric oxide, released in response to aversive stimuli (e. g. the opponent’s agonistic signals), thus increasing the tendency to flee. A cricket then flees, when the sum of its opponent’s actions exceeds the threshold. Subsequently, serotonin keeps the threshold low, so that losers remain submissive; possibly by inhibiting dopamine, which is necessary for recovery of aggression in losers.

Keywords: serotonin; octopamine; nitric oxide; social behaviour; decision making


  • Adamo, S.A., Linn, C.E., and Hoy, R.R. (1995). The role of neurohormonal octopamine during ‘fight or flight’ behaviour in the field cricket Gryllus bimaculatus. J. Exp. Biol. 198, 1691–1700.Google Scholar

  • Alekseyenko, O.V., Chan, Y.B., Fernandez, M.P., Bulow, T., Pankratz, M.J., and Kravitz, E.A. (2014). Single serotonergic neurons that modulate aggression in Drosophila. Curr. Biol. 24, 2700–2707.Google Scholar

  • Andrews, J.C., Fernandez, M.P., Yu, Q., Leary, G.P., Leung, A.K., Kavanaugh, M.P., Kravitz, E.A., and Certel, S.J. (2014). Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males. PLoS Genet 10, e1004356.Google Scholar

  • Arnott, G., and Elwood, R.W. (2009). Assessment of fighting ability in animal contests. Animal Behav. 77, 991–1004.Google Scholar

  • Bacque-Cazenave, J., Cattaert, D., Delbecque, J.P., and Fossat, P. (2017). Social harassment induces anxiety-like behaviour in crayfish. Sci. Rep. 7, 39935.Google Scholar

  • Becker, E.A., and Marler, C.A. (2015). Postcontest blockade of dopamine receptors inhibits development of the winner effect in the California mouse (Peromyscus californicus). Behav. Neurosci. 129, 205–213.Google Scholar

  • Bedrosian, T.A., and Nelson, R.J. (2014). Nitric oxide and serotonin interactions in aggression. Curr. Top. Behav. Neurosci. 17, 131–142.Google Scholar

  • Briffa, M., Sneddon, L.U., and Wilson, A.J. (2015). Animal personality as a cause and consequence of contest behaviour. Biol. Lett. 11.Google Scholar

  • Bubak, A.N., Renner, K.J., and Swallow, J.G. (2014). Heightened serotonin influences contest outcome and enhances expression of high-intensity aggressive behaviors. Behav. Brain. Res. 259, 137–142.Google Scholar

  • Carhart-Harris, R.L., and Nutt, D.J. (2017). Serotonin and brain function: a tale of two receptors. J. Psychopharmacol. 31, 1091–1120.Google Scholar

  • Carre, J.M., and Putnam, S.K. (2010). Watching a previous victory produces an increase in testosterone among elite hockey players. Psychoneuroendocrin. 35, 475–479.Google Scholar

  • Certel, S.J., Leung, A., Lin, C.Y., Perez, P., Chiang, A.S., and Kravitz, E.A. (2010). Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PloS one 5, e13248.Google Scholar

  • Clinard, C.T., Bader, L.R., Sullivan, M.A., and Cooper, M.A. (2015). Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacol. 90, 102–112.Google Scholar

  • Darwin, C. (1859). On the origin of species by natural selection (London: Murray).Google Scholar

  • de Boer, S.F., Buwalda, B., and Koolhaas, J.M. (2016). Aggressive Behavior and Social Stress. In Stress: Concepts, Cognition, Emotion, and Behavior, G. Fink, ed. (Burlington: Academic Press), pp. 293–303.Google Scholar

  • de Boer, S.F., Olivier, B., Veening, J., and Koolhaas, J.M. (2015). The neurobiology of offensive aggression: Revealing a modular view. Physiol. Behav. 146, 111–127.Google Scholar

  • Dyakonova, V.E., and Krushinsky, A.L. (2013). Serotonin precursor (5-hydroxytryptophan) causes substantial changes in the fighting behavior of male crickets, Gryllus bimaculatus. J. Comp. Physiol. A 199, 601–609.Google Scholar

  • Evans, D.A., Stempel, A.V., Vale, R., Ruehle, S., Lefler, Y., and Branco, T. (2018). A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594.Google Scholar

  • Fuxjager, M.J., Montgomery, J.L., Becker, E.A., and Marler, C.A. (2010). Deciding to win: interactive effects of residency, resources and ‘boldness’ on contest outcome in white-footed mice. Animal Behav. 80, 921–927.Google Scholar

  • Hammer, M. (1993). An identified neurone mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63.Google Scholar

  • Hardy, I.C.W., and Briffa, M. (2013). Animal Contests. (Cambridge University Press).Google Scholar

  • Herrera, J.J., Fedynska, S., Ghasem, P.R., Wieman, T., Clark, P.J., Gray, N., Loetz, E., Campeau, S., Fleshner, M., and Greenwood, B.N. (2016). Neurochemical and behavioural indices of exercise reward are independent of exercise controllability. Eur. J. Neurosci. 43, 1190–1202.Google Scholar

  • Hofmann, H.A., and Stevenson, P.A. (2000). Flight restores fight in crickets. Nature 403, 613–613.Google Scholar

  • Hoyer, S.C., Eckart, A., Herrel, A., Zars, T., Fischer, S.A., Hardie, S.L., and Heisenberg, M. (2008). Octopamine in male aggression of Drosophila. Curr. Biol. 18, 159–167.Google Scholar

  • Hsu, Y., Earley, R.L., and Wolf, L.L. (2006). Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol. Rev. Camb. Philos. Soc. 81, 33–74.Google Scholar

  • Huber, F. (1955). Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Zeitschrift für Tierphysiologie 12, 12–48.Google Scholar

  • Iwasaki, M., Nishino, H., Delago, A., and Aonuma, H. (2007). Effects of NO/cGMP signaling on behavioral changes in subordinate male crickets, Gryllus bimaculatus. Zool. Sci. 24, 860–868.Google Scholar

  • Johnson, O., Becnel, J., and Nichols, C.D. (2009). Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neurosci. 158, 1292–1300.Google Scholar

  • Kravitz, E.A. (2000). Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J. Comp. Physiol. A 186, 221–238.Google Scholar

  • Maynard Smith, J., and Price, G.R. (1973). The logic of animal conflict. Nature 246, 15–18.Google Scholar

  • Maynard-Smith, J., and Parker, G.A. (1976). The logic of asymmetric contests. Animal Behaviour 24, 159–175.Google Scholar

  • Mizunami, M., and Matsumoto, Y. (2017). Learning and Memory. In: The Cricket as a Model Organism, H.W. Horch, T. Mito, A. Popadic, H. Ohuhi, and S. Noji, eds. (New York Berlin: Springer), pp. 129–140.Google Scholar

  • Nelson, R.J. (2006). Biology of Aggression (Oxford: Oxford University Press).Google Scholar

  • Oliveira, R.F., Silva, A., and Canario, A.V.M. (2009). Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proc. R. Soc. Lond. B 276, 2249–2256.Google Scholar

  • Olivier, B. (2015). Serotonin: a never-ending story. Eur. J. Pharmacol. 753, 2–18.Google Scholar

  • Payne, R.J.H. (1998). Gradually escalating fights and displays: The cumulative assessment model. Animal Behav. 56, 651–662.Google Scholar

  • Razzoli, M., Nyuyki-Dufe, K., Gurney, A., Erickson, C., McCallum, J., Spielman, N., Marzullo, M., Patricelli, J., Kurata, M., Pope, E.A., et al. (2018). Social stress shortens lifespan in mice. Aging Cell, e12778.Google Scholar

  • Ries, A.S., Hermanns, T., Poeck, B., and Strauss, R. (2017). Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat. Comm. 8, 15738.Google Scholar

  • Rillich, J., Schildberger, K., and Stevenson, P.A. (2007). Assessment strategy of fighting crickets revealed by manipulating information exchange. Animal Behav. 74, 823–836.Google Scholar

  • Rillich, J., Schildberger, K., and Stevenson, P.A. (2011). Octopamine and occupancy – an aminergic mechanism for intruder-resident aggression in crickets. Proc. R. Soc. Lond. B 278, 1873–1880.Google Scholar

  • Rillich, J., and Stevenson, P.A. (2011). Winning fights induces hyperaggression via the action of the biogenic amine octopamine in crickets. PLoS ONE 6, e28891.Google Scholar

  • Rillich, J., and Stevenson, P.A. (2014). A fighter’s comeback: Dopamine is necessary for recovery of aggression after social defeat in crickets. Horm. Behav. 66, 696–704.Google Scholar

  • Rillich, J., and Stevenson, P.A. (2015). Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Front. Behav. Neurosci. 9.Google Scholar

  • Rillich, J., and Stevenson, P.A. (2017). Losing without fighting – Simple aversive stimulation induces submissiveness typical for social defeat via the action of nitric oxide, but only when preceded by an aggression priming stimulus. Front. Behav. Neurosci. 11/50, 1–15.Google Scholar

  • Rillich, J., and Stevenson, P.A. (2018). Serotonin mediates depression of aggression after acute and chronic social defeat stress in a model insect. Front. Behav. Neurosci. 12/233.1–11. doi: 10.3389/fnbeh.2018.00233Google Scholar

  • Rodriguez-Munoz, R., Bretman, A., and Tregenza, T. (2011). Guarding males protect females from predation in a wild Insect. Curr. Biol. 21, 1716–1719.Google Scholar

  • Rose, J., Cullen, D.A., Simpson, S.J., and Stevenson, P.A. (2017a). Born to win or bred to lose: aggressive and submissive behavioural profiles in crickets. Animal Behav. 123, 441–450.Google Scholar

  • Rose, J., Rillich, J., and Stevenson, P.A. (2017b). Chronic social defeat induces long-term behavioral depression of aggressive motivation in an invertebrate model system. PloS ONE 12(9):e0184121, 1–16.Google Scholar

  • Sakura, M., and Aonuma, H. (2013). Aggressive behavior in the antennectomized male cricket Gryllus bimaculatus. J. Exp. Biol. 216, 2221–2228.Google Scholar

  • Stevenson, P.A., Dyakonova, V., Rillich, J., and Schildberger, K. (2005). Octopamine and experience-dependent modulation of aggression in crickets. J. Neurosci. 25, 1431–1441.Google Scholar

  • Stevenson, P.A., Hofmann, H.A., Schoch, K., and Schildberger, K. (2000). The fight and flight responses of crickets depleted of biogenic amines. J. Neurobiol. 43, 107–120.Google Scholar

  • Stevenson, P.A., and Rillich, J. (2013). Isolation associated aggression – a consequence of recovery from defeat in a territorial animal. PLoS One 8, e74965.Google Scholar

  • Stevenson, P.A., and Rillich, J. (2015). Adding up the odds – Nitric oxide signaling underlies the decision to flee and post-conflict depression of aggression. Sci. Adv. 1, e1500060.Google Scholar

  • Stevenson, P.A., and Rillich, J. (2017). Neuromodulators and the Control of Aggression in Crickets. In: The Cricket as a Model Organism, H.W. Horch, T. Mito, A. Popadic, H. Ohuhi, and S. Noji, eds. (New York Berlin: Springer), pp. 169–196.Google Scholar

  • Thomas, A.L., Davis, S.M., and Dierick, H.A. (2015). Of fighting flies, mice, and men: Are some of the molecular and neuronal mechanisms of aggression universal in the Animal Kingdom? PLoS Genet 11, e1005416.Google Scholar

  • Trainor, B.C., Sisk, C.L., and Nelson, R.J. (2017). Hormones and the Development and Expression of Aggressive Behavior. In Hormones, Brain and Behavior, D.W. Pfaff, and M. Joels, eds. (Amsterdam: Elsevier), pp. 145–173.Google Scholar

  • Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H.J., Blenau, W., and Broeck, J.V. (2010). The role of octopamine in locusts and other arthropods. J. Insect Physiol. 56, 854–867.Google Scholar

  • Watanabe, T., Ugajin, A., and Aonuma, H. (2018). Immediate-early promoter-driven transgenic reporter system for neuroethological research in a hemimetabolous Insect. eNeuro 5,1–23Google Scholar

  • Wood, R.I., and Stanton, S.J. (2012). Testosterone and sport: current perspectives. Horm. Behav. 61, 147–155.Google Scholar

  • Zhou, C., Rao, Y., and Rao, Y. (2008). A subset of octopaminergic neurons are important for Drosophila aggression. Nature Neurosci. 11, 1059–1067Google Scholar

About the article

Dr. Jan Rillich

Dr. Jan Rillich is currently a DFG research fellow at the University of Leipzig, where his research with Paul Stevenson focuses on the neuronal mechanisms of aggression in crickets. He studied Biology at the University of Leipzig and obtained his doctorate there in 2006. He has worked as a post doctorate researcher in the laboratories of Jochen Pflüger FU-Berlin and Amir Ayali, Tel Aviv, Israel.

Prof. Dr. Paul A. Stevenson

Prof. Dr. Paul A. Stevenson obtained a Bachelor in Zoology from the University of Nottingham, England followed by a Master in Biology at the University of Konstanz, Germany, where he also obtained his Doctorate in 1988 under Wolfram Kutsch. He has worked as Assistant Professor in Jochen Pflüger’s lab in Berlin, and Klaus Schildberger’s lab in Leipzig, where he was appointed to Associate Professor (ausserplanmässig) in 2009. His research focuses on the neuronal basis of locomotion and social behaviour in insects and how this is controlled by biogenic amines.

Published Online: 2019-02-08

Published in Print: 2019-02-07

Citation Information: Neuroforum, Volume 25, Issue 1, Pages 3–13, ISSN (Online) 2363-7013, ISSN (Print) 0947-0875, DOI: https://doi.org/10.1515/nf-2017-0040.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in