Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nonlinear Engineering

Modeling and Application

Editor-in-Chief: Nakahie Jazar, Gholamreza

4 Issues per year

CiteScore 2017: 0.69

SCImago Journal Rank (SJR) 2017: 0.181
Source Normalized Impact per Paper (SNIP) 2017: 0.338

See all formats and pricing
More options …

Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

Machireddy Gnaneswara Reddy
  • Corresponding author
  • Department of Mathematics, Acharya Nagarjuna University Campus, Ongole-523001, A.P, Andhra Pradesh India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-29 | DOI: https://doi.org/10.1515/nleng-2017-0043


The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

Keywords: Magnetohydrodynamics; micropolar fluid; heat transfer; convective boundary condition; Cattaneo-Christov heat flux


  • [1]

    A.C. Eringen, Theory of micropolar fluids, J. Math. Anal. Appl. 16 (1966) 1–18.Google Scholar

  • [2]

    A.C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl. 38 (1972) 480–4 96.CrossrefGoogle Scholar

  • [3]

    Peddieson J, McNitt RP. Boundary-layer theory for a micropolar fluid. Recent Adv. Eng. Sci. 1970; 5: 405–426.Google Scholar

  • [4]

    Hassanien IA, Gorla RSR. Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing. Acta Mech. 1990; 84: 191–199.CrossrefGoogle Scholar

  • [5]

    Gorla RSR. Unsteady mixed convection in micropolar boundary layer flow on a vertical plate. Fluid Dynamics Research. 1995; 15(4): 237–250.CrossrefGoogle Scholar

  • [6]

    Hady FM. Short communication on the solution of heat transfer to micropolar fluid from a non-isothermal stretching sheet with injection. Int. J. Num. Meth. Heat Fluid Flow. 1996; 6: 99–104.CrossrefGoogle Scholar

  • [7]

    Ishak A, Nazar R, Pop I. Moving wedge and flat plate in a micropolar fluid. Int.J. Eng. Sci. 2006; 44: 1225–1236.CrossrefGoogle Scholar

  • [8]

    Ishak A, Nazar R, Pop I. Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids. Phys. Lett. A. 2008; 372: 559–561.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Hayat T, Abbas Z, Javed T. Mixed convection flow of a micropolar fluid over a non-linear stretching sheet. Phys. Lett. A. 2008; 372: 637–647.CrossrefGoogle Scholar

  • [10]

    Sajid M, Abbas Z, Hayat T. Homotopy analysis for boundary layer flow of a micropolar fluid through a porous channel. Appl. Math. Model. 2009; 33: 4120–4125.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Isaac Lare Animasaun, Melting heat and mass transfer in stagnation point micropolar fluid flow of temperature dependent fluid viscosity and thermal conductivity at constant vortex viscosity, Journal of the Egyptian Mathematical Society 25 (2017) 79–85.Google Scholar

  • [12]

    Ashraf M, Batool K. MHD flow and heat transfer of a micropolar fluid over a stretchable disk. J. Theor. Appl. Mech. 2013; 51(1): 25-38.Google Scholar

  • [13]

    Mahmoud MAA, Waheed SE. MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity. J Egypt Math Soc. 2012; 12: 20–27.Google Scholar

  • [14]

    Gnaneswara Reddy M. Heat generation and radiation effects on steady MHD free convection flow of micropolar fluid past a moving surface. Journal of Computational and Applied Research in Mechanical Engineering. 2013; 2(2): 1–10.Google Scholar

  • [15]

    El-Aziz M.A. Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J. Egypt. Math. Soc. 2013; 21:385–394.CrossrefGoogle Scholar

  • [16]

    Gnaneswara Reddy M, Venugopal Reddy K. Influence of Joule heating on MHD peristaltic flow of a nanofluid with compliant walls. Procedia Engineering. 2015; 127: 1002–1009.CrossrefGoogle Scholar

  • [17]

    Mehmood R, Nadeem S, Masood S. Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. J. Magn.Magn. Mater. 2016; 401: 1006–1014.Web of ScienceCrossrefGoogle Scholar

  • [18]

    Gnaneswara Reddy M. Effects of Thermophoresis, viscous dissipation and Joule heating on steady MHD flow over an inclined radiative isothermal permeable surface with variable thermal conductivity. Journal of Applied Fluid Mechanics. 2014; 7(1): 51–61.Google Scholar

  • [19]

    Gnaneswara Reddy M. Influence of thermal radiation, viscous dissipation and hall current on MHD convection flow over a stretched vertical flat plate. Ain Shams Engineering Journal. 2014; 5: 169–175.CrossrefGoogle Scholar

  • [20]

    Gnaneswara Reddy M, Makinde OD. Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. Journal of Molecular Liquids. 2016; 223: 1242–1248.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Makinde OD, Animasaun IL, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences. 2016; 109: 159–171.Web of ScienceCrossrefGoogle Scholar

  • [22]

    Olubode Kolade Koriko, Tosin Oreyeni, Adeola John Omowaye, Isaac Lare Animasaun, Homotopy Analysis of MHD Free Convective Micropolar Fluid Flow along a Vertical Surface Embedded in Non-Darcian Thermally-Stratified Medium, Open Journal of Fluid Dynamics, 2016, 6, 198–221.Google Scholar

  • [23]

    Fourier JBJ. Theorie Analytique De La Chaleur, Paris, 1822.Google Scholar

  • [24]

    Cattaneo C. Sulla conduzione del calore, Atti Semin Mat. Fis. Univ. Modena Reggio Emilia.1948; 3: 83–101.Google Scholar

  • [25]

    Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mech. Res. Commun. 2009; 36: 481–486.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Straughan B. Thermal convection with the Cattaneo-Christov model. Int. J. Heat Mass Transf. 2010; 53: 95–98.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    Tibullo V, Zampoli V. A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 2011; 38: 77–99.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    Han S, Zheng L, Li C, Zhang X. Coupled flow and heat transfer in Viscoelastic fluid with Cattaneo–Christov heat flux model. Appl. Math. Lett. 2014; 38: 87–93.Web of ScienceCrossrefGoogle Scholar

  • [29]

    Mustafa M. Cattaneo–Christov heat flux model for rotating flow and heat transfer of upper-convicted Maxwell fluid. AIP Adv. 2015; 5: 047109.CrossrefGoogle Scholar

  • [30]

    Ahmad Khan J, Mustafa M, Hayat T, Alsaedi A. Numerical study of Cattaneo-Christov heat Flux model for Viscoelastic flow due to an exponentially stretching surface. PLoS ONE. 2015; 10(9): e0137363. .CrossrefWeb of ScienceGoogle Scholar

  • [31]

    Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T. Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 2016; 99: 702–710.Web of ScienceCrossrefGoogle Scholar

  • [32]

    Cortell R. Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 2007; 184: 864–873.Web of ScienceGoogle Scholar

  • [33]

    Waqas M, Farooq M, Khan M, Alsaedi A, Hayat T, Yasmeen T. Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. International Journal of Heat and Mass Transfer. 2016; 102: 766–772.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-12-27

Accepted: 2017-07-30

Published Online: 2017-08-29

Published in Print: 2017-12-20

Citation Information: Nonlinear Engineering, Volume 6, Issue 4, Pages 317–326, ISSN (Online) 2192-8029, ISSN (Print) 2192-8010, DOI: https://doi.org/10.1515/nleng-2017-0043.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in