Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Noise Mapping

Ed. by Asdrubali, Francesco

Open Access
See all formats and pricing
More options …

Innovative Helicopter In-Flight Noise Monitoring Systems Enabled by Rotor-State Measurements

Lorenzo Trainelli / Massimo Gennaretti / Giovanni Bernardini / Alberto Rolando / Carlo E. D. Riboldi / Matteo Redaelli / Luca Riviello / Alessandro Scandroglio
Published Online: 2016-05-25 | DOI: https://doi.org/10.1515/noise-2016-0014


The present contribution aims at providing a comprehensive illustration of a new approach to rotorcraft noise abatement, especially during terminal procedures, when the vehicle approaches the ground and the acoustic impact is higher. This approach pursues the development of technologies and tools for real-time, in-flight monitoring of the emitted noise. The effect of the acoustic radiation is presented to the pilot in a condensed, practical form on a new cockpit instrumentation, the Pilot Acoustic Indicator (PAI), to be used for performing quieter maneuvers. The PAI is based on the synergetic composition of pre-calculated acoustic data, which are used in a noise estimation algorithm together with the data gathered by an innovative contactless measurement system, capable of acquiring the main rotor blade motion. The paper reports on the current studies in unsteady and quasi-steady aeroacoustic prediction and tip-path-plane angle of attack and thrust coefficient observation. Results on novel methodologies are discussed, together with the main features of the PAI design and development process.


  • [1] Sim B.W., Beasman T., Schmitz F. H., Gopalan G., In-flight bladevortex interaction (BVI) noise measurements using a boommounted microphone array, American Helicopter Society International 60th Annual Forum, Baltimore, MD, USA, June, 2004. Google Scholar

  • [2] Ishii H., Gomi H., Okuno Y., Helicopter flight tests for BVI noise measurement using an on-board external microphone, Technical Report, American Institute of Aeronautics and Astronautics, 2005–6119, Reston, VA, USA, 2005. Google Scholar

  • [3] Chen H. N., Brentner K. S., Shirey J. S., Horn J. F., Ananthan S., Leishman G., Study of the aerodynamics and acoustics of super- BVI, American Helicopter Society International 62nd Annual Forum, Phoenix, AZ, USA, 2006. Google Scholar

  • [4] Schmitz F. H., Greenwood E., Sickenberger R. D., Gopalan G., Conner D., Moralez E., Sim B. W., Tucker G., Decker W. A., Measurement and characterization of helicopter noise in steadystate and maneuvering flight, American Helicopter Society International 63rd Annual Forum, Virginia Beach, VA, USA, 2007. Google Scholar

  • [5] Brentner K. S., Jones H. E., Noise prediction formaneuvering rotorcraft, 6th AIAA/CAES Aeroacoustics Conference, Lahaina, HI, USA, 2000. Google Scholar

  • [6] Janakiram R. D., Khan H., Prediction and validation of helicopter descent flyover noise, American Helicopter Society International 56th Annual Forum, Virginia Beach, VA, USA, 2000. Google Scholar

  • [7] Brentner K. S., Brès G. A., Perez G., Jones H. E., Toward a better understanding of maneuvering rotorcraft noise, American Helicopter Society International 58th Annual Forum, Montreal, Canada, 2002. Google Scholar

  • [8] Brès G. A., Brentner K. S., Perez G., Jones H. E., Maneuvering rotorcraft noise prediction, Journal of Sound and Vibration, Vol. 39, 2003. Google Scholar

  • [9] Brooks T. F., Booth E. R., Jolly J. R., YeagerW. T.,Wilbur M. L., Reduction of blade-vortex interaction noise using higher harmonic pitch control, NASA Technical Memorandum 101624, NASA Langley Research Center, Hampton, VA, USA 1989. Google Scholar

  • [10] Beaumier P., Prieur J., Rahier G., Spiegel P., Demargne A., Tung C., Gallman J. M., Yu Y. H., Kube R., Van derWall B. G., Schultz K. J., Splettstoesser W. R., Brooks T. F., Burley C. L., Boyd D. D., Effect of higher harmonic control on helicopter rotor blade-vortex interaction noise: prediction and initial validation, 75th Fluid Dynamics Symposium, Berlin, Germany, 1994. Google Scholar

  • [11] Chen H. N., Brenter K. S., Anantham S., Leishman J. G., A computational study of helicopter rotor wakes and noise generated during transient maneuvers, American Helicopter Society International 61st Annual Forum, Grapevine, TX, USA, 2005. Google Scholar

  • [12] Le Duc A., Spiegel P., Guntzer F., Lummer M., Götz J. , Buchholz H., Simulation of complete helicopter noise in maneuver flight using aeroacoustic flight test database, American Helicopter Society International 64th Annual Forum, Montreal, Canada, 2008. Google Scholar

  • [13] Gennaretti M., Serafini J., Molica Colella M., Bernardini G., Simulation of helicopter noise inmaneuvering flight, 40th European Rotorcraft Forum ERF 2014, Southampton, UK, 2014. Google Scholar

  • [14] Bernardini G., Anobile A., Serafini J., Hartjes S., Gennaretti M., Methodologies for helicopter noise footprint prediction in manoeuvring flights, 22nd International Conference on Sound and Vibration, Firenze, Italy, 2015. Google Scholar

  • [15] Gennaretti M., Serafini J., Bernardini G., Castorrini A., De Matteis G., Avanzini G., Numerical characterization of helicopter noise hemispheres, Aerospace Science and Technology, Vol. 52, pp. 18-28, 2016.. Google Scholar

  • [16] Clean Sky Joint Undertaking, Call SP1-JTI-CS-2013-01, Call text, January 2013. Google Scholar

  • [17] Trainelli L., Rolando A., Zappa E., Manzoni S., Lovera M., Gennaretti M., Bernardini G., Cordisco P., Terraneo M., Vigoni E., Grassetti R., MANOEUVRES – An effort towards quieter, reliable rotorcraft terminal procedures. Greener Aviation Conference 2014: Clean Sky breakthroughs and worldwide status, Brussels, Belgium, 2014. Google Scholar

  • [18] Trainelli L., Lovera M., Rolando A., Zappa E., Gennaretti M., Cordisco P., Grassetti R., Redaelli M., Project MANOEUVRES – Towards real-time noise monitoring and enhanced rotorcraft handling based on rotor state measurements, 41st European Rotorcraft Forum ERF2015, Munich, Germany, 2015. Google Scholar

  • [19] Colombo A., Locatelli A., Measuring blade angular motions: A kinematical approach, 30th European Rotorcraft Forum ERF 2004, Marseilles, France, 2004. Google Scholar

  • [20] Cigada A., Colombo A., Cordisco P., Ferrario A., Grassetti R., Manzoni S., Redaelli M., Rolando A., Terraneo M., Trainelli L., Vigoni E., Zappa E., Contactless Rotor Flapping Sensor Design, Implementation and Testing, American Helicopter Society International 72nd Annual Forum, West Palm Beach, FL, USA, 2016. Google Scholar

  • [21] Panza S., Lovera M., Rotor state feedback in helicopter flight control: robustness and fault tolerance, IEEE Multi-Conference on Systems and Control, Antibes/Nice, France, 2014. Google Scholar

  • [22] Panza S., Lovera M., Rotor state feedback in the design of rotorcraft attitude control laws, in Bordeneuve-Guibé J., Drouin A., Roos C. (eds.), Advances in Aerospace Guidance, Navigation and Control, Springer, 2015. Google Scholar

  • [23] Panza S., Bergamasco M., Viganò L., Lovera M., Rotor State Feedback in Rotorcraft Attitude Control, 41st European Rotorcraft Forum ERF 2015, Munich, Germany, 2015. Google Scholar

  • [24] Gennaretti M., Bernardini G., Anobile A., Serafini J., Trainelli L., Rolando A., Scandroglio A., Riviello L., Acoustic prediction of helicopter unsteady manoeuvres, 41st European Rotorcraft Forum ERF 2015, Munich, Germany, 2015. Google Scholar

  • [25] Trainelli L., Riboldi C. E. D., Bucari M., Observing the Angle of Attack of the Tip Path Plane from Rotor Blade Measurements, 41st European Rotorcraft Forum ERF 2015, Munich, Germany, 2015. Google Scholar

  • [26] Rolando A., Rossi F., Riboldi C. E. D., Trainelli L., Grassetti R., Leonello D., Redaelli M., The Pilot Acoustic Indicator: a novel cockpit instrument for the greener helicopter, 41st European Rotorcraft Forum ERF 2015, Munich, Germany, 2015. Google Scholar

  • [27] Conner D. A., Page J. A., A Tool for Low Noise Procedures Design and Community Noise Impact Assessment: The Rotorcraft Noise Model (RNM), Heli Japan 2002, Tochigi, Japan, 2002. Google Scholar

  • [28] Le Duc A., Spiegel P., Guntzer F., Kummer M., Götz J., Modelling of Helicopter Noise in Arbitrary Maneuver Flight Using Aeroacoustic Database, 9th Onera-DLR Aerospace Symposium (ODAS 2008), Châtillon, France, 2008. Google Scholar

  • [29] Hartjes S., Buys Y., Visser H. D., Pavel M. D., Gennaretti M., Bernardini G., Arntzen M., Optimization of Rotorcraft Noise Abatement Trajectories, Internoise 2012/ASME NCAD meeting, New York City, USA, 2012. Google Scholar

  • [30] Greenwood E., Schmitz F. H., Sickenberger R. D., A semiempirical noise modeling method for helicopter maneuvering flight operations, American Helicopter Society International 68th Annual Forum, Fort Worth, TX, 2012. Google Scholar

  • [31] Greenwood E., Rau R., May B., Hobbs C., A maneuvering flight noise model for helicopter mission planning, American Helicopter Society International 71st Annual Forum, Virginia Beach, VA, 2015. Google Scholar

  • [32] Gopalan G., Schmitz F. H., A Sensitivity analysis of the quasistatic acoustic mapping of helicopter Blade-Vortex Interaction (BVI) noise during slowly maneuvering flight, 9th AIAA/CEAS Aeroacoustics Conference, Hilton Head, SC, May 2003. Google Scholar

  • [33] Brentner K. S., Jones H. E., Noise Prediction forManeuvering Rotorcraft, AIAA Paper 2000–2031, 6th AIAA/CEAS Aeroacoustics Conference, Lahaina, Hawaii, 2000. Google Scholar

  • [34] Farassat F., Derivation of Formulations 1 and 1A of Farassat, NASA TM 214853, 2007. Google Scholar

  • [35] Brès G. A., Brentner K. S.,Maneuvering Rotorcraft Noise Prediction, Journal of Sound and Vibration, Vol. 275, 2004, pp. 719– 738. Google Scholar

  • [36] JohnsonW., Comprehensive AnalyticalModel of Rotorcraft Aerodynamics and Dynamics, Vol. I - VII, Johnson Aeronautics, 1998. Google Scholar

  • [37] Sarathy S., Higman J., Development and validation of the OH-58D Kiowa Warrior high fidelity flight simulation model,American Helicopter Society International 50th Annual Forum, Washington, DC, 1994. Google Scholar

  • [38] Padfield G. D., White M. D., Flight simulation in academia - HELIFLIGHT in its first year of operation, The Challenge of Realistic Rotorcraft Simulation RAeS Conference, London, 2001. Google Scholar

  • [39] Gassaway B., Strope K., Cicolani L., Lusardi J., He C., Robinson D., Predictive Capabilities of a UH-60 FLIGHTLAB Model with an External Sling Load, American Helicopter Society International 62nd Annual Forum, 2006. Google Scholar

  • [40] Serr C. et al., Improved methodology for take-off and landing operational procedures - The RESPECT programme, 25th European Rotorcraft Forum ERF1999, Rome, Italy, 1999. Google Scholar

  • [41] Quackenbush T. R., Wachspress D. A., Boschitsch A. H., Rotor aerodynamic loads computation using a constant vorticity contour free wake model, Journal of Aircraft, Vol. 32, No. 5, 1995, pp. 911-920. CrossrefGoogle Scholar

  • [42] Prouty R. W., Helicopter Performance, Stability and Control, Robert E. Krieger Publishing Company, 1990. Google Scholar

  • [43] Bottasso C. L., Riboldi C. E. D., Estimation of wind misalignment and vertical shear from blade loads, Renewable Energy, Vol. 26, 2014, pp. 293–302. CrossrefGoogle Scholar

  • [44] Padfield G., Helicopter Flight Dynamics, Blackwell Science, 1996. Google Scholar

  • [45] ANSI S1 Rev. 4 – Specification for sound level meters, American National Standards Institute, 1983. Google Scholar

  • [46] Marburg S., Nolte B., Computational Acoustics of Noise Propagation in Fluids – Finite and Boundary Element Methods, Springer, 2009. Google Scholar

  • [47] Advisory Circular 25-11B: Electronic Flight Displays, Federal Aviation Administration, 2014. Google Scholar

  • [48] Advisory Circular 25.1302-1: Installed Systems and Equipment for Use by the Flightcrew, Federal Aviation Administration, 2013. Google Scholar

  • [49] Certification of Transport Category Rotorcraft, Federal Aviation Administration, 2013. Google Scholar

  • [50] Standard ARP4032B: Human Engineering Considerations in the Application of Color to Electronic Aircraft Displays, SAE, 2013. Google Scholar

  • [51] Standard ARP5364: Human Factor Considerations in the Design of Multifunction Display Systems for Civil Aircraft, SAE, 2003. Google Scholar

About the article

Received: 2015-11-18

Accepted: 2016-05-18

Published Online: 2016-05-25

Citation Information: Noise Mapping, Volume 3, Issue 1, ISSN (Online) 2084-879X, DOI: https://doi.org/10.1515/noise-2016-0014.

Export Citation

©2016 L. Trainelli et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Giovanni Bernardini, Roberto Porcelli, Jacopo Serafini, and Pierangelo Masarati
Aerospace Science and Technology, 2018
Emanuele Zappa, Rui Liu, Lorenzo Trainelli, Andrea Ferrario, Potito Cordisco, Mauro Terraneo, Riccardo Grassetti, and Matteo Redaelli
Measurement, 2017

Comments (0)

Please log in or register to comment.
Log in