Jump to ContentJump to Main Navigation
Show Summary Details
More options …
New at De Gruyter

Nordic Pulp & Paper Research Journal

The international research journal on sustainable utilization of forest bioresources

Editor-in-Chief: Lindström, Tom


IMPACT FACTOR 2017: 1.131
5-year IMPACT FACTOR: 1.262

CiteScore 2017: 1.18

SCImago Journal Rank (SJR) 2017: 0.623
Source Normalized Impact per Paper (SNIP) 2017: 0.555

Online
ISSN
2000-0669
See all formats and pricing
More options …
Volume 33, Issue 3

Issues

Effects of chip pretreatment and feeding segments on specific energy and pulp quality in TMP production

Christer Sandberg / Erik Nelsson / Birgitta A. Engberg / Jan-Erik Berg / Per Engstrand
Published Online: 2018-08-22 | DOI: https://doi.org/10.1515/npprj-2018-3052

Abstract

Increased wood softening and refining intensity have earlier been utilized to improve refining efficiency in mechanical pulping. We have evaluated a combination of increased softening by low dose sulphite chip pretreatment and increased intensity by feeding segment design in a TMP line for production of high quality printing papers.

Norway spruce wood chips were preheated, compressed in an Impressafiner and impregnated with water or sodium sulphite solutions (Na2SO3 charges 3.6 and 7.2 kg/t). Chips were refined in two parallel 68” double disc refiners using two different refining conditions: standard bidirectional segments at normal production rate (9 t/h) and feeding segments at increased production rate (11.1–12.1 t/h).

The feeding segments enabled a 30 % increase in production rate. Refining with feeding segments at 12.1 t/h production rate combined with chip pretreatment with 3.6 kg/t sodium sulphite reduced the specific energy 360 kWh/t (19 %) compared to refining with standard segments and no pretreatment. Pulp properties were similar for the two configurations. The combination of feeding segments and chip pretreatment with water reduced the specific energy 180 kWh/t (9 %). Implementation of most of the technology presented has reduced the electrical energy use for the mill by approximately 80 GWh/year.

Keywords: chip pretreatment; double disc refiner; energy efficiency; mechanical pulping; refining intensity; sodium sulphite

References

  • Ahrel, I., Bäck, I. (1970) Thermomechanical pulp at Rockhammar, EUCEPA. In: Proc. Symp. Mech. Pulp. Oslo. pp. 83–91.Google Scholar

  • Andersson, S., Sandberg, C., Engstrand, P. (2012) Comparison of mechanical pulps from two stage HC single disc and HC double disc – LC refining. Appita J. 65(1):57–62.Google Scholar

  • Asplund, A., Bystedt, I. (1973) Development of the thermo-mechanical pulping method. In: Int. Mech. Pulping Conf. Stockholm, p. 15:1.Google Scholar

  • Atack, D. (1972) On the characterization of pressurized refiner mechanical pulps. Svensk Papperstidning 75(3):89–94.Google Scholar

  • Atack, D., Heitner, C., Stationwala, M.I. (1978) Ultra high yield pulping of eastern black spruce. Svensk Papperstidning 81(5):164–176.Google Scholar

  • Axelson, P., Simonson, R. (1982) Thermomechanical pulping with low addition of sulfite Part 1. Effects of mild sulfite treatment of spruce chips prior to defibration. Svensk Papperstidn. 85(15):R132–R139.Google Scholar

  • Becker, H., Höglund, H., Tistad, G. (1977) Frequency and temperature in chip refining. Pap. Puu 59(3):123–130.Google Scholar

  • Charters, M.T., Ward, R.O. (1973) Elevated temperature refining for high quality mechanical pulp. In: Int. Mech. Pulping Conf. Stockholm. pp. 16:1–16:20.Google Scholar

  • Engberg, B., Berg, J.-E. (2011) A comparative study of models describing high consistency refining. In: Int. Mech. Pulping Conf. Beijing. pp. 96–100.Google Scholar

  • Engstrand, P., Ferritsius, O., Björkqvist, O., Johansson, L. (2015) Mekmassainitiativet för energieffektivitet, e2mp-i. Report series FSCN 2015:58, Mid Sweden University, Sundsvall, ISBN 978-91-88025-56-2. In Swedish.Google Scholar

  • Ferritsius, O., Moldenius, S. (1985) The effect of impregnation method on CTMP properties In: 3rd Int. Symp. Wood Pulp. Chem. Vancouver, Canada, 91–100.Google Scholar

  • Ferritsius, O., Mörseburg, K., Ferritsius, R. (2014) BAT of CTMP and TMP plants with respect to quality development and energy efficiency. In: Int. Mech. Pulping Conf. Helsinki.Google Scholar

  • Gellerstedt, G. (1976) Reactions of lignin during sulfite pulping. Svensk Papperstidning 79(16):537–543.Google Scholar

  • Goring, D. (1963) Thermal softening of lignin, hemicellulose and cellulose. Pulp Paper Mag. Can. 64(12):T517–T528.Google Scholar

  • Heikkurinen, A., Vaarasalo, J., Karnis, A. (1993) Effect of initial defiberization on the properties of refiner mechanical pulp. J. Pulp Pap. Sci. 19(3):119–124.Google Scholar

  • Høydahl, H.-E., Solbakken, M., Dahlquist, G. (1995) TMP for SC grades – A challenge in fiber modelling. In: Int. Mech. Pulping Conf. Montreal, 233–241.Google Scholar

  • Irvine, G.M. (1985) The significance of the glass-transition of lignin in thermomechanical pulping. Wood Sci. Technol. 19:139–149.Google Scholar

  • Johansson, L., Peng, F., Simonson, R. (1997) Effects of temperature and sulfonation on shear deformation of spruce wood. Wood Sci. Technol. 31:105–117.Google Scholar

  • Karlström, A., Eriksson, K. (2014) Fiber energy efficiency part II: Forces acting on the refiner bars. Nord. Pulp Pap. Res. J. 29(2):332–343.Google Scholar

  • Karlström, A., Eriksson, K., Sikter, D., Gustavsson, M. (2008) Refining models for control purposes. Nord. Pulp Pap. Res. J. 23(1):129–138.Google Scholar

  • Karnis, A. (1994) The mechanism of fibre development in mechanical pulping. J. Pulp Pap. Sci. 20(10):J280–J288.Google Scholar

  • Kerekes, R.J. (2011) Force-based characterization of refining intensity. Nord. Pulp Pap. Res. J. 26(1):14–20.Google Scholar

  • Koran, Z. (1967) Electron microscopy of radial tracheid surface of black spruce separated by tensile failure at various temperatures. Tappi J. 50(2):60–67.Google Scholar

  • Koran, Z. (1981) Energy consumption in mechanical fibre separation as a function of temperature. Pulp Pap. Can. 82(6):TR40–TR44.Google Scholar

  • Kure, K.-A., Dahlqvist, G. (1998) Development of structural fibre properties in high intensity refining – Cross-sectional fibre dimensions are significantly changed in refining. Pulp Pap. Can. 99(7):59–63.Google Scholar

  • Kure, K.-A., Dahlqvist, G., Sabourin, M.J., Helle, T. (1999) Development of spruce fibre properties by a combination of a pressurized compressive pretreatment and high intensity refining. In: Int. Mech. Pulping Conf. Houston. pp. 427–433.Google Scholar

  • Kure, K.-A., Sabourin, M.J., Dahlqvist, G., Helle, T. (2000) Adjusting refining intensity by changing refiner plate design and rotational speed – Effects on structural fibre properties. J. Pulp Pap. Sci. 26:346–352.Google Scholar

  • Lai, Y.-Z., Iwamida, T. (1993) Effect of Chemical Treatments on Ultra-High-Yield Pulping. 1. Fibre Separation. Wood Sci. Technol. 27:195–203.Google Scholar

  • Lindholm, C.A., Kurdin, J.A. (1999) Chemimechanical pulping. In: Sundholm, J, Papermaking Science and Technology, Mechanical Pulping. Fapet Oy, Helsinki. pp. 223–249.Google Scholar

  • Lunan, W.E., Harris, G., Franzen, R. (1983) High Pressure Refining and Brightening in Thermomechanical Pulping. In: Tappi Pulping Conf. pp. 239–253.Google Scholar

  • McCrum, N.G., Read, B.E., Williams, G. (1967) Anelastic and Dielectric Effects. In: Polymeric Solids. Wiley, New York. pp. 1–25.Google Scholar

  • Miles, K.B. (1990) Refining intensity and pulp quality in high consistency chip refining. Pap. Puu 72(5):508–514.Google Scholar

  • Miles, K.B., May, W.D., Karnis, A. (1991) Refining intensity, energy consumption and pulp quality in two-stage chip refining. Tappi J. 74(3):221–230.Google Scholar

  • Muhić, D., Huhtanen, J. P., Sundström, L., Sandberg, C., Ullmar, M., Vuorio, P, Engstrand, P. (2011) Energy efficiency in double disc refining – Influence of intensity by segment design. Nord. Pulp Pap. Res. J. 26(3):224–231.Google Scholar

  • Murton, K., Duffy, G. (2005) The influence of pulp residence time on refining intensity and pulp quality. Appita J. 58(1):64–71.Google Scholar

  • Nelsson, E., Sandberg, C., Hildén, L., Daniel, G. (2012) Pressurised compressive chip pre-treatment of Norway spruce with a mill scale Impressafiner. Nord. Pulp Pap. Res. J. 27(1):56–62.Google Scholar

  • Nelsson, E., Sandberg, C., Svensson-Rundlöf, E., Engstrand, P., Fernando, D., Daniel, G. (2015) Low dosage sulphite pretreatment in a modern TMP-line. Nord. Pulp Pap. Res. J. 30(4):591–598.Google Scholar

  • Nurminen, I. (1999) Influence of refining temperature and intensity (disc rotating speed) on TMP energy consumption and pulp and fibre fraction properties. In: Int. Mech. Pulping Conf.. Houston. pp. 333–345.Google Scholar

  • Nygaard, J. (1997) Energy aspects on mechanical pulp, chemical pulp and recycled fibres. In: Int. Mech. Pulping Conf. Stockholm. pp. 17–27.Google Scholar

  • Omholt, I., Miles, K.B. (2008a) Preheating and Refining of Mechanical Pulp at High Temperature. Part I: Fibre Separation and Initial Development. J. Pulp Pap. Sci. 34(1):39–45.Google Scholar

  • Omholt, I., Miles, K.B. (2008b) Preheating and Refining of Mechanical Pulp at High Temperature. Part II: Final pulp properties. J. Pulp Pap. Sci. 34(1):46–50.Google Scholar

  • Sabourin, M.J. (2000) Evaluation of a compressive pretreatment process on TMP properties and energy requirements – It extends the quality and energy benefits of low-energy TMP processes. Pulp Pap. Can. 101(2):50–56.Google Scholar

  • Sabourin, M., Xu, E., Cort, B., Boileau, I., Waller, A. (1997) Optimizing residence time, temperature and speed to improve TMP pulp properties and reduce energy. Pulp Pap. Can. 98(4):38–45.Google Scholar

  • Salmén, L., Fellers, C. (1982) Fundamentals of energy consumption during viscoelastic and plastic deformation of wood. Trans. Tech. Sect. CPPA 8(4):TR93–TR99.Google Scholar

  • Schniewind, A.P., Barrett, J.D. (1972) Wood as a linear orthotropic viscoelastic material. Wood Sci. Technol. 6(1):43–57.Google Scholar

  • Stationwala, M.I. (1994) Production of high-quality and low-energy chemithermomechanical pulp. Tappi J. 77(2):113–119.Google Scholar

  • Strand, B.C., Falk, B., Moqvist, A., Jacksom, M. (1993) The effect of production rate on specific energy consumption in high consistency chip refining. In: Int. Mech. Pulping Conf. Oslo. pp. 143–151.Google Scholar

  • Sundholm, J., Heikkurinen, A., Mannström, B. (1988) The role of rate of rotation and frequency in refiner mechanical pulping. Pap. Puu 5:446–451.Google Scholar

  • Uhmeier, A., Salmén, L. (1996) Repeated large radial compression of heated spruce. Nord. Pulp Pap. Res. J. 11(3):171–177.Google Scholar

  • Wiberg, R., Forslund, M. (2011) Energiförbrukning i massa- och pappersindustrin (Energy use in the pulp- and paper industry 2011). In: Skogsindustrierna. Stockholm, Sweden. [in Swedish].Google Scholar

  • Widehammar, S. (2004) Stress-strain relationships for spruce wood: Influence of strain rate, moisture content and loading direction. Exp. Mech. 44(1):44–48.Google Scholar

About the article

Received: 2018-03-22

Accepted: 2018-06-05

Published Online: 2018-08-22

Published in Print: 2018-09-25


Funding Source: Knowledge Foundation

Award identifier / Grant number: 20100281

Funding Source: Energimyndigheten

Award identifier / Grant number: 2009-001882

This work was performed within the research program “Energy Efficient Mechanical Pulping” at FSCN, Mid Sweden University and was financed by the Knowledge Foundation (grant No. 20100281), the Swedish Energy Agency (grant No. 2009-001882) and by in-kind from Holmen AB.


Conflict of interest: The authors declare no conflicts of interest.


Citation Information: Nordic Pulp & Paper Research Journal, Volume 33, Issue 3, Pages 448–459, ISSN (Online) 2000-0669, ISSN (Print) 0283-2631, DOI: https://doi.org/10.1515/npprj-2018-3052.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in