Jump to ContentJump to Main Navigation
Show Summary Details
More options …
New at De Gruyter

Nordic Pulp & Paper Research Journal

The international research journal on sustainable utilization of forest bioresources

Editor-in-Chief: Lindström, Tom


IMPACT FACTOR 2017: 1.131
5-year IMPACT FACTOR: 1.262

CiteScore 2017: 1.18

SCImago Journal Rank (SJR) 2017: 0.623
Source Normalized Impact per Paper (SNIP) 2017: 0.555

Online
ISSN
2000-0669
See all formats and pricing
More options …
Volume 33, Issue 3

Issues

Average fibre length as a measure of the amount of long fibres in mechanical pulps – ranking of pulps may shift

Olof Ferritsius / Rita Ferritsius / Mats Rundlöf
Published Online: 2018-08-15 | DOI: https://doi.org/10.1515/npprj-2018-3058

Abstract

The purpose of this study was to investigate the applicability of different ways of calculating the average fibre length based on length measurements of individual particles of mechanical pulps. We have found that the commonly used average length-weighted fibre length, which is based on the assumption that coarseness is constant for all particles, as well as the arithmetic average, may lead to erroneous conclusions in real life as well as in simulations when used as a measure of the amount of long fibres. The average length-length-weighted fibre length or a weighting close to that, which to a larger extent suppresses the influence of shorter particles, is a relevant parameter of the “length” factor, i. e. amount of long fibres. Our findings are based on three studies: refining of different assortments of wood raw material in a mill; data from LC refining in mill of TMP, including Bauer McNett fractionation; mixing of pulps with different fibre length distributions. If the acceptable average fibre length for different products can be lowered, the possibility of reducing the specific energy input in refining will increase. Therefore, we need a reliable and appropriate way to assess the “length” factor.

Keywords: average fibre length; fibres; fines; long fibres; mechanical pulp; weighted length

References

  • Bailey, I. W. (1920) “The Cambium and its Derivative tissues. II. Size variations of Cambial initials in Gymnosperms and Anginosperms”. Am. J. Bot. 7:11.Google Scholar

  • Batchelor, J. W., Kure, K.-A. (1999), “Refining and the development of fibre properties”. Nord. Pulp Pap. Res. J. 16(4):285–291.Google Scholar

  • Bentley, R. G., Scudamore, P., Jack, J. S. W. (1994) “A comparison between fibre length measurement methods”. Pulp Pap. Can. 95(4):41–45.Google Scholar

  • Brecht, W., Holl, M. (1939) “Schaffung eines Normalverfahrens zur Gütebewertung von Holzschliffen”. Der Papier-Fabrikant 24(10):74–86.Google Scholar

  • Brecht, W., Klemm, K.-H. (1953) “The Mixture of Structures in a Mechanical Pulp as a Key to the Knowledge of its Technological Properties”. Pulp Pap. Can. 51(1):72–80.Google Scholar

  • Carvalho, M. G., Ferreira, P. J., Martins, A. A., Figueiredo, M. M. (1997) “A comparative study of two automated techniques for measuring fiber length”. Tappi J. 80(2):137–142.Google Scholar

  • Clark, J. d’A. (1942) “The Measurement and Influence of Fiber Length”. Paper Trade J. 115(26):36–42.Google Scholar

  • Clark, J. d’A. (1962) “Weight Average Fiber Length- A Quick, Visual Method”. Tappi J. 45(1):38–45.Google Scholar

  • Clark, J. d’A. (1978) “Pulp Technology and Treatment for Paper”. 0-87930-066-3, Miller Freeman Publications, San Francisco.Google Scholar

  • Clark, J. d’A. (1985) “Pulp Technology and Treatment for Paper”. 0-87930-164-3, Miller Freeman Publications, San Francisco.Google Scholar

  • Falk, B., Jackson, M., Danielsson, O. (1987) “The Use of Single and Double Disc Refiner Configurations for the Production of TMP for Filled Super-Calandered and Light-Weight Coated Grades”. In: Proceedings International Mechanical Pulping Conference. Vancouver. pp. 137–144.Google Scholar

  • Forgacs, O. L. (1963) “The Characterization of Mechanical Pulps”. Pulp Pap. Mag. Can. 64:T89–T116.Google Scholar

  • Gavelin, G., Kolmodin, K., Treiber, E. (1975) “Critical point drying of fines from mechanical pulps”. Sv Papperstid 78(17):603–608.Google Scholar

  • Höglund, H. The Ljungberg textbook, Chapter 23 (Mechanical pulping), Fiber and Polymer Technology. KTH, Stockholm, Sweden, 2004.Google Scholar

  • International Mechanical Pulping Conference (2005) Proceedings, Oslo.

  • International Mechanical Pulping Conference (2009) Proceedings, Sundsvall.

  • International Mechanical Pulping Conference (2011) Proceedings, Xian.

  • International Mechanical Pulping Conference (2014) Proceedings, Helsinki.

  • Jang, H. F., Seth, R. S. (2004) “Determining the mean values for Fiber Physical Properties”. Nord. Pulp Pap. Res. J. 19(3:372–378.CrossrefGoogle Scholar

  • Kauppinen, M. (1998) “Prediction and Control of Paper Properties by Fiber Width and Cell Wall Thickness measurement with Fast Image Analysis”. In: PTS Symposium: Image Analysis for Quality and Enhanced Productivity, Munich.Google Scholar

  • Klem, P. (1929) “On the Calculation of Weighted average Fiber Length in Paper”. Pulp Pap. Can. 28(3):173–177.Google Scholar

  • Levlin, J.-E., Söderhjelm, L. “Paper Making Science and Technology. Pulp and Paper Testing”, ISBN 952-5216-17-9. Fapet Oy, Helsinki, 1999.Google Scholar

  • Lidbrandt, O., Mohlin, U.-B. (1980) “Changes in fiber structure due to refining as revealed by SEM”. In: Int symposium on fundamental concepts of refining, IPC, Appleton, Wisconsin, USA, preprints p. 61–74.Google Scholar

  • Marton, R. (1964) “Fiber structure and properties of different groundwoods”. Tappi J. 47(1):205A–208A.Google Scholar

  • Mohlin, U.-B. (1980) “Properties of TMP fractions and their importance for the quality of printing papers”. Sv Papperstid 83(16):461–466.Google Scholar

  • Paavilainen, L. (1990) “Importance of particle size, fibre length, and fines for the characterization of softwood kraft pulp”. Pap. Puu 72(5):516–526.Google Scholar

  • Parham, R. A., Church, J. O. “On the Calculation of Weighted average Fiber Length in Paper”. Institute of Paper Chemistry Technical Paper Series, No. 44, pp. 546–554, 1977.Google Scholar

  • Pulkkinen, I., Ala-Kaila, K., Aittamaa, J. (2006) “Characterization of wood fibers using fiber property distributions”. Chem. Eng. Process. 45:546–554.CrossrefGoogle Scholar

  • Reiyer Österling, S. (2015) Distributions of Fiber Characteristics as a Tool to Evaluate Mechanical Pulps, ISSN: 1652-893X, ISBN: 978-91-86694-66-3, PhD thesis, Mid Sweden University.

  • Ring, G. J. F., Bacon, A. J. (1997) “Multiple Component Analysis of Fiber Length Distributions”. Tappi J. 80(1):224–231.Google Scholar

  • Strand, B. C. (1987) “Factor Analysis as Applied to the Characterization of High Yield Pulps”. In: TAPPI Pulping Conference, Proceedings. pp. 61–66.Google Scholar

  • Sundholm, J., Heikkurinen, A., Mannström, B. (1987) “The Use of Single and Double Disc Refiner Configurations for the Production of TMP for Filled Super-Calandered and Light-Weight Coated Grades”. In: Proceedings International Mechanical Pulping Conference. Vancouver. pp. 45–51.Google Scholar

  • Turunen, M., Ny, C. L., Tienvieri, T., Niinimäki, J. (2005) Comparision of fiber morphology analysers. Appita J. 58(1):362–375.Google Scholar

  • Tyrväinen, J. “Newsgrade TMP from three different Norway spruce (Picea Abies) wood assortments in mill-scale”. Pulp Pap. Can., 1997. 98(10):51–60.Google Scholar

About the article

Received: 2017-12-12

Accepted: 2018-07-01

Published Online: 2018-08-15

Published in Print: 2018-09-25


We gratefully acknowledge the Swedish Energy Agency, the Knowledge Foundation, and Stora Enso for financial support.


Conflict of interest: There is no conflict of interest.


Citation Information: Nordic Pulp & Paper Research Journal, Volume 33, Issue 3, Pages 468–481, ISSN (Online) 2000-0669, ISSN (Print) 0283-2631, DOI: https://doi.org/10.1515/npprj-2018-3058.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in