Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Novel Superconducting Materials

Editor-in-Chief: Bianconi, Antonio

Ed. by Awana, V.P.S.

Open Access
Online
ISSN
2299-3193
See all formats and pricing
More options …

On the nature of filamentary superconductivity in metal-doped hydrocarbon organic materials

D. Hillesheim
  • Corresponding author
  • Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Gofryk
  • Corresponding author
  • Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. S. Sefat
  • Corresponding author
  • Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-03 | DOI: https://doi.org/10.1515/nsm-2015-0001

Abstract

High temperature superconductivity in K-doped 1,2:8,9-dibenzenopentacene (C30H18) has been recently reported [1] with Tc = 33 K, the highest among organic superconductors at ambient pressure. Here we report on our search for superconductivity in K, Ba, and Ca-doped hydrocarbon organic materials. We find that Ba-anthracene (C14H10) and K-Picene (C22H14) show features characteristics of superconducting state, although very weak. The data suggests that Ba-anthracene might be a new organic superconductor with Tc ~35 K.

References

  • [1] Xue, M., Cao, T.,Wang, D.,Wu, Y., Yang, H., Dong, X., He, J., Li, F., Chen, G. F., Superconductivity above 30 K in alkali-metal-doped hydrocarbon, Sci. Reports 2, 1 (2012). Google Scholar

  • [2] Bednorz, G., Muller, K. A., Possible high TC superconductivity in the Ba-La-Cu-O system,” Z. Phys. B 64, 189 (1986). Google Scholar

  • [3] Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H., Iron-based layered superconductor La Google Scholar

  • [4] FeAs (x = 0.05−0.12) with Tc = 26 K, J. Am. Chem. Soc. 130, 3296 (2008). Google Scholar

  • [5] Hsu, F. C., Luo, J. Y., Yeh, K. W., Chen, T. K., Huang, T. W., Wu, P. M., Lee, Y. C., Huang, Y. L., Chu, Y. Y., Yan, D. C., Wu, M. K., Superconductivity in the PbO-type structure a-FeSe, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008). Google Scholar

  • [6] Ishiguro, T., Kunihiko, Y., Gunzi, S. Organic superconductors, Springer. ISBN 3-540-63025-2, (1998). Google Scholar

  • [7] Little,W. A., Possibility of synthesizing an organic superconductor, Phys. Rev. A 134, 1416 (1964). Google Scholar

  • [8] Little, W. A., Superconductivity at room temperature, Sci. Am. 212, 21 (1965). Google Scholar

  • [9] Bechagaard, K., The properties of five highly conducting salts: (TMTSF)2X, X=PF−6 , AsF−6, SbF−6, BF−4 , and NO−3, derived from Tetramethyltetraselenafulvalene (TMTSF), Solid State Commun. 33, 1119 (1980). Google Scholar

  • [10] Phillips, P. From Insulator to Superconductor, Nature 406, 687 (2000). Google Scholar

  • [11] Jerome, D. Bechgaard, K., Superconducting plastic, Nature 410, 162 (2001). Google Scholar

  • [12] Buflnger, D. R., Ziebarth, R. P., Stenger, V. A., Recchia, C., Penington, C. H., Rapid and eflcient synthesis of alkali metal-C60 compounds in liquid ammonia, J. Am. Chem. Soc. 115, 9267 (1993). Google Scholar

  • [13] Kociak, M., Kasumov, A. Y., Gueron, S., Reulet, B., Khodos, I. I., Gorbatov, Y. B., Volkov, V. T., Vaccarini, L, Bouchiat, H., Superconductivity in Ropes of Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 86, 2416 (2001). Google Scholar

  • [14] Mitsuhashi, R., Suzuki, Y., Yamanari, Y., Mitamura, H., Kambe, T., Ideda, N., Okamoto, H., Fujiwara, A., Yamaji, M., Kawasaki, N., Maniwa, Y., Kubozono, Y., Superconductivity in alkali-metaldoped picene, Nature 464, 76 (2010). Web of ScienceGoogle Scholar

  • [15] Teranishi, K., He, X., Sakai, Y., Izumi, M., Goto, H., Eguchi, R., Takabayashi, Y., Kambe, T., Kubozono, Y., Observation of zero resistivity in K-doped picene, Phys Rev. B 87, 60505 (2013). Web of ScienceGoogle Scholar

  • [16] Wang, X. F., Liu, R. H., Gui, Z., Zie, Y. L., Yan, Y. J., Ying, J. J., Luo, Z. G., Chen, X. H. Superconductivity at 5 K in alkali-metal-doped phenanthrene, Nature Commun. 2, 507 (2011). Web of ScienceCrossrefGoogle Scholar

  • [17] Wang, X. F., Yan, Y. J., Gui, Z., Liu, R. H., Ying, J. J., Luo, X. G., Chen, Z. H. Superconductivity in A1.5phenanthrene (A=Sr,Ba), Phys. Rev. B 84, 214523 (2011). Web of ScienceGoogle Scholar

  • [18] Kato, T., Kambe, T., Kubozono, Y., Strong Intramolecular Electron-Phonon Coupling in the Negatively Charged Aromatic Superconductor Picene, Phys. Rev. Lett. 107, 077001 (2011). Web of ScienceGoogle Scholar

  • [19] The Engineering ToolBox: Ammonia - NH3 - Properties, http: //www.engineeringtoolbox.com/ammonia-d_971.html, Date of access: 07/02/2014. Google Scholar

  • [20] Ruff, A., Sing, M., Claessen, R., Lee, H., Tomic, M., Jeschke, H. O, Valenti, R. Absence of Metallicity in K-doped Picene: Importance of Electronic Correlations, Phys. Rev. Lett. 110, 216403 (2013).Web of ScienceGoogle Scholar

About the article

Received: 2014-07-27

Accepted: 2014-09-23

Published Online: 2015-01-03


Citation Information: Novel Superconducting Materials, Volume 1, Issue 1, ISSN (Online) 2299-3193, DOI: https://doi.org/10.1515/nsm-2015-0001.

Export Citation

© 2014 D. Hillesheim et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
T Wakita, H Okazaki, T Jabuchi, H Hamada, Y Muraoka, and T Yokoya
Journal of Physics: Condensed Matter, 2017, Volume 29, Number 6, Page 064001

Comments (0)

Please log in or register to comment.
Log in