Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Novel Superconducting Materials

Editor-in-Chief: Bianconi, Antonio

Ed. by Awana, V.P.S.

Open Access
See all formats and pricing
More options …

Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity

Antonio Bianconi
  • RICMASS, Rome International Center for Materials Science Superstripes, Via dei Sabelli 119A, 00185 Rome, Italy and Institute of Crystallography, Consiglio Nazionale delle Ricerche, via Salaria, 00015 Monterotondo, Italy and INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Rome Udr, Italy, E-mail: antonio.bianconi@ricmass.eu
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Jarlborg
Published Online: 2015-11-06 | DOI: https://doi.org/10.1515/nsm-2015-0006


Emerets’s experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.

PACS: 4.20.Pq; 74.72.-h; 74.25.Jb


  • Google Scholar

  • [1] A.P. Drozdov, M.I. Eremets, I.A. Troyan, Conventional superconductivity at 190 K at high pressures. Preprint arXiv:1412.0460, (1 December 2014) Google Scholar

  • [2] A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 K at high pressures, Nature 525, 73-76 (2015) Google Scholar

  • [3] M.I. Eremets in "Superstripes 2015" A. Bianconi (ed.) Science Series Vol. 6, p.286 (Superstripes Press, Rome, 2015) isbn:9788866830382. Google Scholar

  • [4] E. Cartlidge, Superconductivity record bolstered by magnetic data. Nature (29 June 2015) doi:10.1038/nature.2015.17870 CrossrefGoogle Scholar

  • [5] X. Zhong, H. Wang, J. Zhang, H. Liu, S. Zhang, H.-F. Song, G. Yang, L. Zhang, Y. Ma, Tellurium hydrides at high pressures: high-temperature superconductors, preprint arXiv:1503.00396 (march 2015) Google Scholar

  • [6] C. Chen, F. Tian, D. Duan, et al. Pressure induced phase transition in MH2 (M = V, Nb), The Journal of Chemical Physics, 140, 114703 (2014). Google Scholar

  • [7] P. Hou, X. Zhao, F. Tian, et al. High pressure structures and superconductivity of AlH3S (H2) predicted by first principles. RSC Adv. 5, 5096-5101 (2015). Google Scholar

  • [8] L. Paulatto, I. Errea, M. Calandra, F. Mauri First-principles calculations of phonon frequencies, lifetimes and spectral functions from weak to strong anharmonicity: the example of palladium hydrides Phys. Rev. B, 91, 054304 (2015). CrossrefGoogle Scholar

  • [9] Y. Liu, F. Tian, X. Jin, et al. Near-edge X-ray absorption fine structure of solid oxygen under high pressure: A density functional theory study. Solid State Communications, 147, 126-129 (2008). Google Scholar

  • [10] D. Duan, Y. Liu, F. Tian, et al., Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014). Google Scholar

  • [11] A. O. Lyakhov, A. R. Oganov, H.T. Stokes, Q. Zhu, New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172 (2013). Google Scholar

  • [12] D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, T. Cui, Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev.B 91, 180502 (2015). CrossrefGoogle Scholar

  • [13] J. A. Flores-Livas, A. Sanna, E.K.U. Gross, High temperature superconductivity in sulfur and selenium hydrides at high pressure preprint arxiv:1501.06336v1 (26 Jan 2015) Google Scholar

  • [14] S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H.-F. Song, G. Yang, L. Zhang, Y. Ma, Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides preprint arXiv:1502.02607 (9 Feb. 2015) Google Scholar

  • [15] D. Papaconstantopoulos, B.M. Klein, M.J. Mehl,W.E. Pickett, Cubic H3S around 200 GPa: an atomic hydrogen superconductor stabilized by sulfur Phys. Rev. B 91, 184511 (2015). CrossrefGoogle Scholar

  • [16] I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, F. Mauri, Hydrogen sulphide at high pressure: a strongly-anharmonic phonon-mediated superconductor Phys. Rev. Lett. 114, 157004 (2015). CrossrefGoogle Scholar

  • [17] N. Bernstein, C.S. Hellberg, M.D. Johannes, I.I.Mazin, M.J. Mehl, What superconducts in sulfur hydrides under pressure, and why Phys. Rev. B 91, 060511 (2015). CrossrefGoogle Scholar

  • [18] A. P. Durajski, R. Szczesniak, Y. Li, Non-BCS thermodynamic properties of H2S superconductor: Physica C: Superconductivity and its Applications 515, 1 (2015) Google Scholar

  • [19] R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, R. Arita Firstprinciples study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides. Phys. Rev. B, 91, 224513 (2015) CrossrefGoogle Scholar

  • [20] J. E. Hirsch, F.Marsiglio Hole superconductivity in H2S and other sulfides under high pressure. Physica C: Superconductivity and its Applications 511, 45-49 (2015). Google Scholar

  • [21] N. W. Ashcroft, Metallic hydrogen: a high-temperature superconductor? Physical Review Letters 21, 1748 (1968) CrossrefGoogle Scholar

  • [22] V. L. Ginzburg, D. A. Kirzhnitz, High temperature superconductivity. Consultants Bureau, Plenum Press, (New York, 1982). Google Scholar

  • [23] C. F. Richardson, N. W. Ashcroft High temperature superconductivity in metallic hydrogen: electron-electron enhancements Phys. Rev. Lett. 78, 118 (1997) CrossrefGoogle Scholar

  • [24] E. G.Maksimov, Savrasov, Lattice stability and superconductivity of the metallic hydrogen at high pressure. Solid State Communications 119, 569 (2001) CrossrefGoogle Scholar

  • [25] N. W. Ashcroft, Hydrogen Dominant Metallic Alloys: High Temperature Superconductors? Physical Review Letters 92, 187002 (2004) CrossrefGoogle Scholar

  • [26] N. W. Ashcroft, Symmetry and higher superconductivity in the lower elements. In Bianconi, A. (ed.) Symmetry and Heterogeneity in High Temperature Superconductors. vol. 214 of NATO Science Series II: Mathematics, Physics and Chemistry, 3-20 (Springer Netherlands, 2006). Google Scholar

  • [27] E. Babaev, A. Sudbo, N. W. Ashcroft A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature 431, 666-668 (2004) Google Scholar

  • [28] E. G. Maksimov, O. V. Dolgov, A note on the possible mechanisms of high-temperature superconductivity. Physics-Uspekhi 40, 933 (2007). CrossrefGoogle Scholar

  • [29] K. Abe, N.W. Ashcroft Quantumdisproportionation: The high hydrides at elevated pressures. Phys. Rev. B, 88, 174110 (2013). CrossrefGoogle Scholar

  • [30] J. Bardeen, L.N. Cooper, J.R. Schrieffer Theory of Superconductivity Phys. Rev. 108, 1175 (1957) Google Scholar

  • [31] A. B. Migdal, Interaction between electrons and lattice vibrations in a normal metal Soviet Physics JETP (Engl. Transl.);(United States) 34, 996 (1958) Google Scholar

  • [32] W. L. McMillan, Transition temperature of Strong-Coupled superconductors. Physical Review 167, 331-344 (1968). Google Scholar

  • [33] R. C. Dynes, McMillan’s equation and the Tc of superconductors. Solid State Communications 10, 615-618 (1972). URL http://dx.doi.org/10.1016/0038-1098(72)90603-5. CrossrefGoogle Scholar

  • [34] G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys.-JETP (Engl. Transl.);(United States) 11.3 (1960). Google Scholar

  • [35] Weinberg, S. Superconductivity for particular theorists. Progress of Theoretical Physics Supplement 86, 43-53 (1986). CrossrefGoogle Scholar

  • [36] N.N. Bogoliubov. D. V. Shirkov, V.V. Tolmachev, A new method in the superconductivity theory in Akad. Nauk. SSSR Moscow 1958, Fortschr. Physik 6, 605 (1958) Google Scholar

  • [37] Y. Nambu, Axial Vector Current Conservation in Weak Interactions Phys. Rev. Lett. 4, 380 (1960) CrossrefGoogle Scholar

  • [38] L. P. Gor’kov, Developing BCS ideas in the former Soviet Union, Int. J. Mod. Phys. B, 24, 3835 (2010). Google Scholar

  • [39] B.D. Josephson, Possible new effects in superconductive tunnelling, Physics Letters 1, 251 (1962) CrossrefGoogle Scholar

  • [40] J. Kondo Superconductivity in Transition Metals Prog. Theor. Phys. 29,1 (1963) CrossrefGoogle Scholar

  • [41] J. M. Blatt Theory of Superconductivity, Academic Press, New York (1964) Google Scholar

  • [42] A. J. Leggett, in Modern Trends in the Theory of CondensedMatter, edited by by A. Pekalski and R. Przystawa, Lecture Notes in Physics Vol. 115 (Springer-Verlag, Berlin, 1980), p. 13. Google Scholar

  • [43] James F. Annett Superconductivity, Superfluids and Condensates, (Oxford University Press, Oxford, 2004) Google Scholar

  • [44] B. V. Svistunov, E.S. Babaev, N. V. Prokof’ev Superfluid States of Matter CRC Press, 2015 Google Scholar

  • [45] Coleman A.J., Yukalov V.I. Reduced Density Matrices (Springer, Berlin, 2000) Google Scholar

  • [46] Bianconi, A., Process of increasing the critical temperature Tc of a bulk superconductor by making metal heterostructures at the atomic limit. US Patent 6,265,019 Jul. 2001 (priority date Dec 7, 1993) Google Scholar

  • [47] A. Bianconi, On the Possibility of New High Tc Superconductors by Producing Metal Heterostructures as in the Cuprate Perovskites. Solid State Communications 89, 933 (1994). CrossrefGoogle Scholar

  • [48] A. Bianconi, On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high Tc superconductivity, Solid State Communications 91, 1 (1994). CrossrefGoogle Scholar

  • [49] A. Bianconi, The instability close to the 2D generalized Wigner polaron crystal density: A possible pairing mechanism indicated by a key experiment, Physica C: Superconductivity 235-240, 269 (1994). Google Scholar

  • [50] A. Bianconi, M. Missori, The instability of a 2D electron gas near the critical density for a Wigner polaron crystal giving the quantum state of cuprate superconductors, Solid State Communications 91, 287 (1994). CrossrefGoogle Scholar

  • [51] A. Vittorini-Orgeas, A. Bianconi, From Majorana Theory of Atomic Autoionization to Feshbach Resonances in High Temperature Superconductors Journal of Superconductivity and Novel Magnetism 22, 215 (2009) Google Scholar

  • [52] A. Perali, A. Bianconi, A. Lanzara, N.l. Saini The Gap Amplification at the Shape Resonance in a superlattice of quantum stripes, Solid State Commun. 100, 181 (1996) Google Scholar

  • [53] A. Valletta, G. Bardelloni, M. Brunelli, A. Lanzara, A. Bianconi, N. L. Saini, Tc amplification and pseudogap at a shape resonance in a superlattice of quantum stripes, Journal of Superconductivity 10, 383 (1997). CrossrefGoogle Scholar

  • [54] A. Valletta, A. Bianconi, A. Perali, N. L. Saini, Electronic and superconducting properties of a superlattice of quantumstripes at the atomic limit. Zeitschrift fur Physik B CondensedMatter 104, 707 (1997). CrossrefGoogle Scholar

  • [55] A. Bianconi, A. Valletta, A. Perali, N.L. Saini, Superconductivity of a striped phase at the atomic limit, Physica C: Superconductivity 296, 269 (1998). Google Scholar

  • [56] Antonio Bianconi, Shape resonances in multi-condensate granular superconductors formed by networks of nanoscale-striped puddles, J. Phys.: Conf. Ser. 449, 012002 (2013). Google Scholar

  • [57] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases Reviews of Modern Physics 82, 1225 (2010) CrossrefGoogle Scholar

  • [58] M. Greiner, C. A. Regal, D. S. Jin, Emergence of a molecular Bose Einstein condensate from a Fermi gas, Nature 426, 537-540 (2003). Google Scholar

  • [59] A. Perali, P. Pieri, L. Pisani, G. C. Strinati, BCS-BEC crossover over at Finite Temperature for Superfluid Trapped Fermi Atoms Phys. Rev. Lett. 92, 220404 (2004). CrossrefGoogle Scholar

  • [60] Q. Chen, J. Stajic, S. Tan, K. Levin, BCS-BEC crossover: From high temperature superconductors to ultracold superfluids. Physics Reports 412, 1 (2005), Google Scholar

  • [61] A. Perali, P. Pieri, G.C. Strinati, Quantitative comparison between theoretical predictions and experimental results for the BCS-BEC crossover. Phys. Rev. Lett. 93, 100404 (2004). CrossrefGoogle Scholar

  • [62] G. Campi et al. Inhomogeneity of charge density wave and quenched disorder in a high Tc superconductor. Nature 525, 359?362 (2015). Google Scholar

  • [63] A. Bianconi, S. Agrestini, G. Bianconi, D. Di Castro, N.L. Saini, A quantum phase transition driven by the electron lattice interaction gives high Tc superconductivity. Journal of alloys and compounds 317, 537-541 (2001). Google Scholar

  • [64] G. Bianconi, Superconductor-insulator transition on annealed complex networks. Physical Review E 85, 061113 (2012) CrossrefGoogle Scholar

  • [65] P. Turner L. Nottale, The origins of macroscopic quantum coherence in high temperature superconductivity Physica C: Superconductivity and its Applications 515,15 (2015) Google Scholar

  • [66] M. A. Continentino, I. T. Padilha, H. Caldas, Mechanism for enhancement of superconductivity inmulti-band systemswith odd parity hybridization. Journal of Statistical Mechanics: Theory and Experiment 2014„ P07015 (2014). Google Scholar

  • [67] G. R. Stewart, Superconductivity in the A15 structure. Physica C: Superconductivity and its Applications 514, 28 (2015). Google Scholar

  • [68] J. Friedel, Phase transitions, electron-phonon couplings in perfect crystals modulated structures. in "Electron-Phonon Interactions and Phase Transitions" Springer Science & Business Media, NATO Advanced Study Institute (1977). Google Scholar

  • [69] J. Labbe’, J. Friedel Instabilite electronique et changement de phase cristalline des composes du type V3Si basse temparature. J. Phys. France 27, 153-165 (1966) CrossrefGoogle Scholar

  • [70] T. Jarlborg , G. Arbman, The electronic structure of some A15 compounds by semiself-consistent band calculations. J. Phys. F: Metal Phys. 7, 1635, (1977). Google Scholar

  • [71] B. M. Klein, L. L. Boyer, D. A. Papaconstantopoulos, Superconducting properties of A15 compounds derived from Band- Structure results. Physical Review Letters 42, 530-533 (1979). CrossrefGoogle Scholar

  • [72] T. Jarlborg, A. Junod , M. Peter, Electronic structure, superconductivity, and spin fluctuations in the A15 compounds A3B, B: A=V, Nb; B=Ir,Pt,Au. Phys. Rev. B27, 1558 (1983). CrossrefGoogle Scholar

  • [73] W. L. McMillan, Superconductivity, and martensitic transformations in A-15 compounds. in Electron-Phonon Interactions and Phase Transitions, Springer Science & Business Media, NATO Advanced Study Institute (1977). Google Scholar

  • [74] L. R. Testardi, Structural phase transitions, supercobductivity in A15 compounds. in "Electron-Phonon Interactions and Phase Transitions" Springer Science & Business Media, NATO Advanced Study Institute (1977). Google Scholar

  • [75] L. R. Testardi, Structural instability and superconductivity in A- 15 compounds. Reviews of Modern Physics 47, 637 (1975) CrossrefGoogle Scholar

  • [76] M. Takeda, H. Yoshida, H. Endoh, , H. Hashimoto, High resolution electron microscope observations of microstructures in a15 type Nb3X superconductors. Journal of Microscopy 151, 147-157 (1988). Google Scholar

  • [77] M. Arita, H. U. Nissen, Y. Kitano,W. Schauer, Electron Microscopy of Planar Defects in A15 Nb3Ge. Journal of Solid State Chemistry 107, 76 (1993) Google Scholar

  • [78] N. L. Saini, M. Filippi, Z. Wu, H. Oyanagi, H. Ihara, A. Iyo, S. Agrestini,A. Bianconi, A study of the Nb3Ge system by Ge Kedge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy. Journal of Physics: Condensed Matter 14, 13543 (2002) CrossrefGoogle Scholar

  • [79] A. Bianconi, D. Di Castro, S. Agrestini, G. Campi, N. L. Saini, A. Saccone, S. De Negri, M. Giovannini. A superconductormade by a metal heterostructure at the atomic limit tuned at the ‘shape resonance’: MgB2 Journal of Physics: Condensed Matter 13, 7383 (2001). CrossrefGoogle Scholar

  • [80] A. Bussmann-Holder, A. Bianconi, Raising the diboride superconductor transition temperature using quantum interference effects. Physical Review B 67, 132509.( 2003), CrossrefGoogle Scholar

  • [81] H. Suhl, B. T. Matthias, L. R. Walker, Bardeen-Cooper-Schrieffer Theory of Superconductivity in the Case of Overlapping Bands. Physical Review Letters 3, 552 (1959). CrossrefGoogle Scholar

  • [82] G. A. Ummarino, R. S. Gonnelli, S. Massidda, A. Bianconi, Two-band Eliashberg equations and the experimental Tc of the diboride Mg1−xAlxB2. Physica C: Superconductivity 407, 121 (2004). Google Scholar

  • [83] H. J. Choi, M. L. Cohen, S. G. Louie, Anisotropic Eliashberg theory and the two-band model for the superconducting properties of MgB2. Physical Review B 73, 104520 (2006). . CrossrefGoogle Scholar

  • [84] T. Yildirim, O. Gülseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, et al., Giant Anharmonicity and Nonlinear Electron-Phonon Coupling in MgB2: A Combined First-Principles Calculation and Neutron Scattering Study. Physical Review Letters 87 037001 (2001). CrossrefGoogle Scholar

  • [85] L. Boeri, E. Cappelluti, L. Pietronero, Small Fermi energy, zeropoint fluctuations, and nonadiabaticity in MgB2. Physical Review B 71, 012501 (2005). CrossrefGoogle Scholar

  • [86] G. Campi, E. Cappelluti, T. Proffen, X. Qiu, E. S. Bozin, Billinge, S. Agrestini, N. L. Saini, A. Bianconi, Study of temperature dependent atomic correlations in MgB2. The European Physical Journal B - Condensed Matter and Complex Systems, 52, 15 (2006). CrossrefGoogle Scholar

  • [87] L. Simonelli, V. Palmisano, M. Fratini, M. Filippi, P. Parisiades, D. Lampakis, E. Liarokapis, A. Bianconi, Isotope effect on the E2g phonon and mesoscopic phase separation near the electronic topological transition in Mg1−xAlxB2. Phys. Rev. B 80, 014520 (2009). CrossrefGoogle Scholar

  • [88] D. Innocenti, N. Poccia, A. Ricci, A. Valletta, S. Caprara, A. Perali, A. Bianconi, Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge. Phys. Rev. B 82, 184528 (2010). CrossrefGoogle Scholar

  • [89] I. M. Lifshitz, Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP 11, 1130 (1960). Google Scholar

  • [90] A. Varlamov, V. Edorov, A. Pantsulaya, Kinetic properties of metals near electronic topological transitions (2 1/2 order transitions) Advances in Physics 38, 469 (1989). CrossrefGoogle Scholar

  • [91] K. I. Kugel, A. L. Rakhmanov, A. O. Sboychakov, Nicola Poccia, Antonio Bianconi Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78, 165124 (2008) CrossrefGoogle Scholar

  • [92] A. Bianconi, N. Poccia, A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel, Intrinsic arrested nanoscale phase separation near a topological Lifshitz transition in strongly correlated two-band metals. Supercond. Sci. Technol. 28, 024005 (2015). CrossrefGoogle Scholar

  • [93] A. Guidini, A. Perali, Band-edge BCS-BEC crossover in a twoband superconductor: physical properties and detection parameters. Supercond. Sci. Technol. 27, 124002 (2014). CrossrefGoogle Scholar

  • [94] A. Bianconi, Feshbach shape resonance in multiband superconductivity in heterostructures. Journal of Superconductivity 18, 625 (2005). CrossrefGoogle Scholar

  • [95] A. Perali, D. Innocenti, A. Valletta, A. Bianconi, Anomalous isotope effect near a 2.5 lifshitz transition in a multi-band multicondensate superconductor Superconductor Science and Technology 25, 124002 (2012). Google Scholar

  • [96] D. Innocenti, A. Bianconi, Isotope Effect at the Fano Resonance in Superconducting Gaps for Multiband Superconductors at a 2.5 Lifshitz Transition. J Supercond Nov Magn 26, 1319 (2013). CrossrefGoogle Scholar

  • [97] R. Caivano, et al. Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAsbased superconductors, Superconductor Science and Technology 22, 014004 (2009). Google Scholar

  • [98] D. Innocenti, A. Valletta, A. Bianconi, Shape Resonance at a Lifshitz Transition for High Temperature Superconductivity in Multiband Superconductor, Journal of Superconductivity and Novel Magnetism 24, 1137 (2011). Google Scholar

  • [99] A. Bianconi, Quantum Materials: Shape Resonances in Superstripes. Nature Physics 9, 536 (2013). CrossrefGoogle Scholar

  • [100] A. A. Kordyuk, et al. Electronic band structure of ferro-pnictide superconductors from ARPES experiment. Journal of Superconductivity and Novel Magnetism 26, 2837 (2013) Google Scholar

  • [101] A. A. Kordyuk, Pseudogap from ARPES experiment: Three gaps in cuprates and topological superconductivity. LowTemperature Physics 41, 319-341 (2015). Google Scholar

  • [102] C. Liu, et al., Importance of the Fermi-surface topology to the superconducting state. of the electron-doped pnictide Ba(Fe1- xCox)2As2 Physical Review B 84, 020509 (2011) Google Scholar

  • [103] S. Ideta, T. Yoshida, I. Nishi, A. Fujimori, Y. Kotani, K. Ono, Y. Nakashima, S. Yamaichi, T. Sasagawa, M. Nakajima, K. Kihou, Y. Tomioka, C. H. Lee, A. Iyo, H. Eisaki, T. Ito, S. Uchida, R. Arita, Dependence of Carrier Doping on the Impurity Potential in Transition-Metal-Substituted FeAs-Based Superconductors, Phys. Rev. Lett. 110, 107007 (2013) CrossrefGoogle Scholar

  • [104] S. V. Borisenko et al. Direct observation of spin-orbit coupling in iron-based superconductors. preprint (2014) arXiv:1409.8669 Google Scholar

  • [105] Khandker Quader, Michael Widom Lifshitz Transitions in 122- Pnictides Under Pressure preprint (2014) arXiv:1401.7349 Google Scholar

  • [106] A. Charnukha et al. Interaction-induced singular Fermi surface in a high-temperature oxypnictide. superconductor. Scientific Reports 5, 10392 (2015) Google Scholar

  • [107] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, P. C. Canfield Boron Isotope Effect in Superconducting MgB2, Phys. Rev. Lett., 86, 1877 (2001). Google Scholar

  • [108] T. Jarlborg, A. Bianconi, Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in H3S superconductor preprint arXiv:1509.07451 (2015) Google Scholar

  • [109] O.K. Andersen, Linear methods in band theory, Phys. Rev. B12, 3060 (1975). CrossrefGoogle Scholar

  • [110] B. Barbiellini, S.B. Dugdale T. Jarlborg, The EPMD-LMTO program for electron positron momentum density calculations in solids, Comput. Mater. Sci. 28, 287 (2003). CrossrefGoogle Scholar

  • [111] O. Gunnarsson, B.I. Lundquist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, Phys. Rev. B 13, 4274 (1976). CrossrefGoogle Scholar

  • [112] T. Jarlborg, A.A. Manuel, M. Peter, Experimental and theoretical determination of the Fermi surface of V3Si, Phys. Rev. B27, 4210, (1983). CrossrefGoogle Scholar

  • [113] T. Jarlborg, E.G. Moroni, G. Grimvall, 𝛾 transition in Ce from temperature-dependent band-structure calculations, Phys. Rev. B 55, 1288, (1997). CrossrefGoogle Scholar

  • [114] E.G. Moroni, G. Grimvall, T. Jarlborg, Free Energy Contributions to the hcp-bcc Transformation in Transition Metals, Phys. Rev. Lett. 76, 2758, (1996). CrossrefGoogle Scholar

  • [115] T. Jarlborg, A. Bianconi, Fermi surface reconstruction of superoxygenated La2CuO3superconductors with ordered oxygen interstitials, Phys. Rev. B 87, 054514, (2013). CrossrefGoogle Scholar

  • [116] D. Pettifor, Theory of energy bands and related properties of 4d-transition metals. II. The electron-phonon matrix element, superconductivity and ion core enhancement, J. Phys. F: Metal Phys. 7, 1009, (1977). Google Scholar

  • [117] G.D. Gaspari, B.L. Gyorffy, Electron-Phonon Interactions, d Resonances, and Superconductivity in Transition Metals, Phys. Rev. Lett. 28, 801, (1972). CrossrefGoogle Scholar

  • [118] M. Dacorogna, T. Jarlborg, A. Junod, M. Pelizzone, M. Peter, Electronic structure and low-temperature properties of V(x)Nb(1- x)N alloys J. Low Temp. Phys. 57, 629, (1984). Google Scholar

  • [119] T. Jarlborg, Electronic structure and properties of pure and doped -FeSi from ab initio local-density theory, Phys. Rev. B59, 15002, (1999). CrossrefGoogle Scholar

  • [120] T. Jarlborg, P. Chudzinski, T. Giamarchi, Effects of thermal and spin fluctuations on the band structure of purple bronze Li2Mo12O34 Phys. Rev. B85, 235108, (2012). Google Scholar

  • [121] T. Jarlborg, Role of thermal disorder for magnetism and the - 𝛾 transition in cerium: Results from density-functional theory, Phys. Rev. B89, 184426 (2014). CrossrefGoogle Scholar

  • [122] T. Jarlborg, Electronic structure and properties of superconducting materials with simple Fermi surfaces J. of Supercond. and Novel Magn., 28, 1231 (2014) Google Scholar

  • [123] G. Grimvall, Thermophysical properties of materials. (North- Holland, Amsterdam, 1986). Google Scholar

  • [124] T. Jarlborg, A model of the T-dependent pseudogap and its competition with superconductivity in copper oxides, Solid State Commun. 151, 639, (2011). Google Scholar

  • [125] A. Perali, C. Castellani, C. Di Castro, M. Grilli, E. Piegari, and A. A. Varlamov, Two-gap model for underdoped cuprate superconductors, Physical Review B Rapid Commun. 62, 9295 (2000). CrossrefGoogle Scholar

  • [126] A. Perali, M. Sindel, G. Kotliar Multi-patch model for transport properties of cuprate superconductors, European Physical Journal B 24, 487 (2001). CrossrefGoogle Scholar

  • [127] Quan Y., Pickett W.E., van Hove singularities and spectral smearing in high temperature superconducting H3S preprint arXiv:1508.04491 (2015) Google Scholar

About the article

Received: 2015-09-07

Accepted: 2015-10-03

Published Online: 2015-11-06

Citation Information: Novel Superconducting Materials, Volume 1, Issue 1, ISSN (Online) 2299-3193, DOI: https://doi.org/10.1515/nsm-2015-0006.

Export Citation

©2015 Antonio Bianconi and Thomas Jarlborg. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lev P. Gor’kov and Vladimir Z. Kresin
Reviews of Modern Physics, 2018, Volume 90, Number 1
Vladimir Z. Kresin
Journal of Superconductivity and Novel Magnetism, 2017
G. E. Volovik and K. Zhang
Journal of Low Temperature Physics, 2017
Annette Bussmann-Holder, Jürgen Köhler, Arndt Simon, Myung-Hwan Whangbo, Antonio Bianconi, and Andrea Perali
Condensed Matter, 2017, Volume 2, Number 3, Page 24
Mari Einaga, Masafumi Sakata, Akiyoshi Masuda, Harushige Nakao, Katsuya Shimizu, Alexander Drozdov, Mikhail Eremets, Saori Kawaguchi, Naohisa Hirao, and Yasuo Ohishi
Japanese Journal of Applied Physics, 2017, Volume 56, Number 5S3, Page 05FA13
Alexander F. Goncharov, Sergey S. Lobanov, Vitali B. Prakapenka, and Eran Greenberg
Physical Review B, 2017, Volume 95, Number 14
Quan Zhuang, Xilian Jin, Tian Cui, Yanbin Ma, Qianqian Lv, Ying Li, Huadi Zhang, Xing Meng, and Kuo Bao
Inorganic Chemistry, 2017, Volume 56, Number 7, Page 3901
F. Fan, D.A. Papaconstantopoulos, M.J. Mehl, and B.M. Klein
Journal of Physics and Chemistry of Solids, 2016, Volume 99, Page 105
L. Ortenzi, E. Cappelluti, and L. Pietronero
Physical Review B, 2016, Volume 94, Number 6
Richard J. Needs and Chris J. Pickard
APL Materials, 2016, Volume 4, Number 5, Page 053210
Lev P. Gor’kov and Vladimir Z. Kresin
Scientific Reports, 2016, Volume 6, Number 1
A. Marcelli
Acta Physica Polonica A, 2016, Volume 129, Number 2, Page 264
Antonio Bianconi
Journal of Superconductivity and Novel Magnetism, 2016, Volume 29, Number 3, Page 557
G. Campi and A. Bianconi
Journal of Superconductivity and Novel Magnetism, 2016, Volume 29, Number 3, Page 627

Comments (0)

Please log in or register to comment.
Log in