Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Novel Superconducting Materials

Editor-in-Chief: Bianconi, Antonio

Ed. by Malavasi, Lorenzo

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3193
See all formats and pricing
More options …

The response of an individual vortex to local mechanical contact

Anna Kremen
  • Bar-Ilan University, Department of Physics and Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shai Wissberg
  • Bar-Ilan University, Department of Physics and Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yishai Shperber
  • Bar-Ilan University, Department of Physics and Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beena Kalisky
  • Bar-Ilan University, Department of Physics and Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-26 | DOI: https://doi.org/10.1515/nsm-2016-0003

Abstract

Recently we reported a new way to manipulate vortices in thin superconducting films by local mechanical contact without magnetic field, current or altering the pinning landscape [1]. We use scanning superconducting interference device (SQUID) microscopy to image the vortices, and a piezo element to push the tip of a silicon chip into contact with the sample. As a result of the stress applied at the contact point, vortices in the proximity of the contact point change their location. Here we study the characteristics of this vortex manipulation, by following the response of individual vortices to single contact events. Mechanical manipulation of vortices provides local view of the interaction between strain and nanomagnetic objects, as well as controllable, effective, localized, and reproducible manipulation technique.

Keywords: superconductivity; Superconducting vortices; scanning SQUID microscopy; single vortex manipulation

References

  • [1] Kremen, A., et al., Mechanical Control of Individual Superconducting Vortices. Nano Letters, 2016. 16(3): p. 1626-1630. CrossrefWeb of ScienceGoogle Scholar

  • [2] Lukyanchuk, I., et al., Rayleigh instability of confined vortex droplets in critical superconductors. Nat Phys, 2015. 11(1): p. 21- 25. CrossrefWeb of ScienceGoogle Scholar

  • [3] Embon, L., et al., Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Scientific reports, 2015. 5: p. 7598-7598. CrossrefWeb of ScienceGoogle Scholar

  • [4] Berciu, M., T.G. Rappoport, and B. Janko,Manipulating spin and charge in magnetic semiconductors using superconducting vortices. Nature, 2005. 435(7038): p. 71-75. Google Scholar

  • [5] Milošević, M.V., G.R. Berdiyorov, and F.M. Peeters, Fluxonic cellular automata. Applied Physics Letters, 2007. 91(21): p. 212501. CrossrefWeb of ScienceGoogle Scholar

  • [6] Kalisky, B., et al., Dynamics of single vortices in grain boundaries: I-V characteristics on the femtovolt scale. Applied Physics Letters, 2009. 94(20): p. 202504. Web of ScienceCrossrefGoogle Scholar

  • [7] Gutiérrez, J., et al., Strong isotropic flux pinning in solutionderived YBa2Cu3O7-x nanocomposite superconductor films. Nature materials, 2007. 6(5): p. 367-73. CrossrefGoogle Scholar

  • [8] Llordés, A., et al., Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nature Materials, 2012. 11(4): p. 329-336. Web of ScienceCrossrefGoogle Scholar

  • [9] Gardner, B.W., et al., Manipulation of single vortices in YBa2Cu3O6.354 with a locally applied magnetic field. Applied Physics Letters, 2002. 80(6): p. 1010-1012. CrossrefGoogle Scholar

  • [10] Auslaender, O.M., et al., Mechanics of individual isolated vortices in a cuprate superconductor. Nature Physics, 2008. 5(1): p. 35-39. CrossrefWeb of ScienceGoogle Scholar

  • [11] Jaklevic, R.C., et al., Quantum Interference Effects in Josephson Tunneling. Physical Review Letters, 1964. 12(7): p. 159-160. CrossrefGoogle Scholar

  • [12] Clarke, J., Principles and applications of SQUIDs. Proceedings of the IEEE, 1989. 77(8): p. 1208-1223. CrossrefGoogle Scholar

  • [13] Huber, M.E., et al., Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Review of Scientific Instruments, 2008. 79(5): p. 053704. CrossrefWeb of ScienceGoogle Scholar

  • [14] Laudahn, U., et al., Determination of elastic constants in thin films using hydrogen loading. Applied Physics Letters, 1999. 74(5): p. 647-649. CrossrefGoogle Scholar

  • [15] Pristáš, G., et al., Influence of hydrostatic pressure on superconducting properties of niobium thin film. Thin Solid Films, 2014. 556: p. 470-474. Web of ScienceGoogle Scholar

  • [16] Kalisky, B., et al., Behavior of vortices near twin boundaries in underdoped Ba(Fe1-xCox)2As2. Physical Review B, 2011. 83(6): p. 064511. Web of ScienceCrossrefGoogle Scholar

  • [17] Goldstein, M.J. and W.G. Moulton, Thermally induced flux motion and the elementary pinning force in Nb thin films. Physical Review B, 1989. 40(13): p. 8714-8719. CrossrefGoogle Scholar

  • [18] Shapoval, T., et al., Quantitative assessment of pinning forces and magnetic penetration depth in NbN thin films from complementary magnetic force microscopy and transport measurements. Physical Review B, 2011. 83(21): p. 214517. Web of ScienceCrossrefGoogle Scholar

  • [19] Gubin, A.I., et al., Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Physical Review B, 2005. 72(6): p. 064503. CrossrefGoogle Scholar

About the article

Received: 2016-02-08

Accepted: 2016-04-05

Published Online: 2016-05-26


Citation Information: Novel Superconducting Materials, ISSN (Online) 2299-3193, DOI: https://doi.org/10.1515/nsm-2016-0003.

Export Citation

©2016 Anna Kremen et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in