Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Editor-in-Chief: Melnik, Roderick

Managing Editor: Povitsky, Alex

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
In This Section

Quantum optimal control using the adjoint method

Alfio Borzì
  • Institut für Mathematik, Universität Würzburg Emil-Fischer-Strasse 30, 97074 Würzburg, Germany
  • Email:
Published Online: 2012-11-29 | DOI: https://doi.org/10.2478/nsmmt-2012-0007


Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are discussed for finite- and infinitedimensional quantum systems. Some insight is provided considering ’two-level’ models. This work is completed with an outlook to future developments.

Keywords: Quantum systems; Schrödinger equation; Optimal control theory; Numerical optimization

PACS: 03.65.-w; 32.80.Qk; 37.90+j; 82.37.Gk; 82.53.-k

MSC: 35Q40; 49K20; 65H10; 65M06; 65N06; 90C53

  • C. Altafini, A.M. Bloch, M.R. James, A. Loria, and P. Rouchon, Special Issue on Control of Quantum Mechanical Systems, IEEE Transactions on Automatic Control 57, 1893 (2012). [Crossref]

  • M. Annunziato and A. Borzì, Optimal control of probability density functions of stochastic processes, Mathematical Modelling and Analysis 15, 393 (2010).

  • M. Annunziato and A. Borzì, A Fokker-Planck control framework for multidimensional stochastic processes, Journal of Computational and Applied Mathematics 237, 487 (2013).

  • M. Annunziato and A. Borzì, A Fokker-Planck-based control of a two-level open quantum system, submitted.

  • X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys. 4, 729 (2008).

  • A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science 282, 919 (1998).

  • A. Auger, A. Ben Haj Yedder, E. Cances, C. Le Bris, C.M. Dion, A. Keller, and O. Atabek, Optimal laser control of molecular systems: methodology and results, Math. Models Methods Appl. Sci. 12, 1281 (2002).

  • J.M. Ball, J.E. Marsden, and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Contr. Optim 20, 575 (1982).

  • W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput. 25, 1674 (2004).

  • A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time, Springer, Berlin, (2009).

  • K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis 232, 328 (2006).

  • A.M. Bloch, R.W. Brockett, C. Rangan, The Controllability of Infinite Quantum Systems and Closed Subspace Criteria, IEEE Transaction Automatic Control 55, 1897 (2010).

  • A. Borzì and U. Hohennester, Multigrid optimization schemes for solving Bose-Einstein condensate control problems, SIAM J. Scientific Computing 30, 441 (2008).

  • A. Borzì, J. Salomon, and S. Volkwein, Formulation and numerical solution of finite-level quantum optimal control problems, J. Comput. Appl. Math. 216, 170 (2008). [Crossref]

  • A. Borzì, G. Stadler, and U. Hohenester, Optimal quantum control in nanostructures: Theory and application to a generic three-level system, Phys. Rev. A 66, 053811 (2002). [Crossref]

  • U. Boscain, G. Charlot, J.-P. Gauthier, S. Guerin, H.-R. Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems, Journal of Mathematical Physics 43, 2107 (2002). [Crossref]

  • J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI (1999).

  • D. Bouwmeester, A. Ekert, and A. Zeilinger, editors. phThe Physics of Quantum Information. Springer, Berlin, (2000).

  • R. Bücker, J. Grond, S. Manz, T. Berrada, T. Betz, C. Koller, U. Hohenester, T. Schumm, A. Perrin, J. Schmiedmayer, Twin-atom beams, Nature Physics 7, 608 (2011). [Crossref]

  • H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, (2007).

  • C. Brif, R. Chakrabarti and H. Rabitz, Control of quantum phenomena: past, present and future, New Journal of Physics 12, 075008 (2010). [Crossref]

  • P.W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes, Wiley-VCH, Berlin, (2003).

  • J. Burkardt, M. Gunzburger, and J. Peterson, Insensitive functionals, inconsistent gradients, spurious minima, and regularized functionals in flow optimization problems, Int. J. Comput. Fluid Dyn. 16, 171 (2002). [Crossref]

  • A.G. Butkovskiy and Yu.I. Samoilenko, Control of Quantum-Mechanical Processes and Systems, Kluwer Acad. Publ. (1990).

  • A.Z. Capri, Nonrelativistic Quantum Mechanics, World Scientific Publishing Co. Inc., River Edge, NJ, (2002).

  • A. Castro and I. V. Tokatly, Quantum optimal control theory in the linear response formalism, Phys. Rev. A 84, 033410 (2011). [Crossref]

  • T. Chambrion, P. Mason, M. Sigalotti and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Annales de l’Institut Henri Poincaré - Non Linear Analysis.

  • J.-M. Coron, A. Grigoriu, C. Lefter, and G. Turinici, Quantum control design by lyapunov trajectory tracking for dipole and polarizability coupling, New Journal of Physics 11, 105034 (2009). [Crossref]

  • P. Crouch and F. Silva Leite, Controllability on classical Lie groups, Mathematics of Control Signals and Systems 1, 31 (1988).

  • Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient with a strong global convergence property, SIAM J. Opt. 10, 177 (1999).

  • D. D’Alessandro, Introduction to Quantum Control and Dynamics, Chapman & Hall (2008).

  • F. Dalfovo, G. Stefano, L.P. Pitaevskii, S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999). [Crossref]

  • E. B. Davies, Quantum theory of open systems, Academic Press, London (1976).

  • I. Degani and A. Zanna, Optimal Quantum Control by an Adapted Coordinate Ascent Algorithm, SIAM J. Sci. Comput. 34, 1488 (2012).

  • I. Degani, A. Zanna, L. Saelen and R. Nepstad, Quantum Control With Piecewise Constant Control Functions, SIAM J. Sci. Comput. 31, 3566 (2009).

  • G. Dirr and U. Helmke, Lie Theory for Quantum Control, GAMM-Mitteilungen 31, 59 (2008). [Crossref]

  • L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island (2002).

  • H.O. Fattorini, Infinite Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and its Applications, vol. 62, Cambridge University Press (1999).

  • C. Fiolhais, F. Nogueira, and M. Marques (Eds.), A Primer in Density Functional Theory, Lectures Notes in Physics Vol. 620, Springer, Berlin (2003).

  • N Gisin and I C Percival, The quantum-state diffusion model applied to open systems, J. Phys. A: Math. Gen. 25, 5677 (1992). [Crossref]

  • V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, Completely positive semigroups of N-level systems, J. Math. Phys. 17, 821 (1976). [Crossref]

  • W.W. Hager and H. Zhang, A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search, SIAM Journal on Optimization 16, 170 (2005). [Crossref]

  • U. Hohenester, Optical properties of semiconductor nanostructures: Decoherence versus quantum control, in M. Rieth and W. Schommers, (Eds.), Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers (2005).

  • U. Hohenester, P.-K. Rekdal, A. Borzì, J. Schmiedmayer, Optimal quantum control of Bose Einstein condensates in magnetic microtraps, Phys. Rev. A 75, 023602 (2007). [Crossref]

  • G. M. Huang, T. J. Tarn, and J. W. Clark, On the controllability of quantummechanical systems, J. Math. Phys. 24, 2608 (1983). [Crossref]

  • R. Illner, H. Lange, and H. Teismann, Limitations on the control of Schrödinger equations, ESAIM: COCV 12, 615 (2006).

  • W. Karwowski and R.V. Mendes, Quantum control in infinite dimensions, Phys. Lett. A 322, 282 (2004). [Crossref]

  • N. Khaneja, R. W. Brockett, and S. J. Glaser, Time Optimal Control in Spin Systems, Phys. Rev. A 63, 032308 (2001). [Crossref]

  • N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, Journal of Magnetic Resonance 172, 296 (2005). [Crossref]

  • K. Kime, Simultaneous control of a rod equation and a simple Schrodinger equation, Systems and Control Letters 24, 301 (1995).

  • W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). [Crossref]

  • K. Kormann, S. Holmgren and H. O. Karlsson, A Fourier-Coefficient Based Solution of an Optimal Control Problem in Quantum Chemistry, JOTA 147, 491 (2010).

  • I. Lesanovsky, T. Schumm, S. Hofferberth, L.M. Andersson, P. Krüger, and J. Schmiedmayer, Adiabatic radiofrequency potentials for the coherent manipulation of matter waves, Phys. Rev. A 73, 033619 (2006). [Crossref]

  • C. Lan, T.-J. Tarn, Q.-S. Chi, and J. W. Clark, Analytic controllability of time-dependent quantum control systems, J. Math. Phys. 46, 052102 (2005). [Crossref]

  • H. Lan and Y. Ding, Ordering, positioning and uniformity of quantum dot arrays, Nano Today 7, 94 (2012) . [Crossref]

  • P. Laurent, H. Rabitz, J. Salomon, and G. Turinici, Control through operators for quantum chemistry, Proceedings of the 51st IEEE Conference on Decision and Control, Maui (2012).

  • G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976). [Crossref]

  • J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin (1971).

  • J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review (1988).

  • Y. Maday, J. Salomon and G. Turinici, Monotonic time-discretized schemes in quantum control, Num. Math. 103, 323 (2006).

  • Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms, J. Chem. Phys. 118, 8191 (2003). [Crossref]

  • Y. Maday, J. Salomon, and G. Turinici, Parareal in time control for quantum systems, SIAM J. Num. Anal. 45, 2468 (2007).

  • R. Melnik, Multiple scales and coupled effects in modelling low dimensional semiconductor nanostructures: Between atomistic and continuum worlds, Encyclopedia of Complexity and Systems Science, Editor-in-Chief Meyers, R.A., Springer (2009).

  • A.P. Peirce, M.A. Dahleh, and H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications, Phys. Rev. A 37, 4950 (1988). [PubMed] [Crossref]

  • H. Rabitz, G. Turinici, and E. Brown, Control of Molecular Motion: Concepts, Procedures, and Future Prospects, Ch. 14 in Handbook of Numerical Analysis, Volume X, P. Ciarlet and J. Lions, Eds., Elsevier, Amsterdam (2003).

  • H. Rabitz, M. Hsieh, and C. Rosenthal, Quantum optimally controlled transition landscapes, Science 303, 998 (2004).

  • V. Ramakrishna, H. Rabitz, M.V. Salapaka, M. Dahleh and A. Peirce, Controllability of Molecular Systems, Phys. Rev. A 62, 960 (1995). [Crossref]

  • E. Räsänen, A. Castro, J. Werschnik, A. Rubio, and E.K.U. Gross, Optimal Control of Quantum Rings by Terahertz Laser Pulses, Phys. Rev. Lett. 98, 157404 (2007). [PubMed] [Crossref]

  • H. Risken, The Fokker Planck Equation: Methods of Solution and Applications, Springer.

  • Y. Saad, J.R. Chelikowsky, and S.M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Review 52, 3 (2010). [Crossref]

  • A. Sacchetti, Nonlinear time-dependent one-dimensional Schrodinger equation with double-well potential, SIAM J. Math. Anal. 35, 1160 (2004).

  • S.G. Schirmer, H. Fu, and A. Solomon, Complete controllability of quantum systems, Phys. Rev. A 63, 063410 (2001). [Crossref]

  • B.J. Sussman, D. Townsend, M.Y. Ivanov, and A. Stolow, Dynamic Stark control of photochemical processes, Science 13, 278 (2006). [Crossref]

  • G. Turinici, Controllable quantities for bilinear quantum systems, Proceedings of the 39th IEEE Conference on Decision and Control, 1364 (2000).

  • G. Turinici and H. Rabitz, Wavefunction controllability in quantum systems, Journal of Physics A 36, 2565 (2003).

  • A. van den Bos, Complex Gradient and Hessian, IEEE Proc.-Vis. Image Signal Processing 141, 380 (1994).

  • R. Vilela Mendes, Universal families and quantum control in infinite dimensions, Phys. Lett. A 373, 2529 (2009).

  • R. Vilela Mendes and V. I. Man’ko, Quantum control and the Strocchi map, Phys. Rev. A 67, 053404 (2003). [Crossref]

  • R. Vilela Mendes and V. I. Man’ko, On the problem of quantum control in infinite dimensions, J. Phys. A: Math. Theor. 44, 135302 (2011). [Crossref]

  • G. von Winckel and A. Borzì, Computational techniques for a quantum control problem with H1-cost, Inverse Problems 24, 034007 (2008).

  • G. von Winckel and A. Borzì, QUCON: A fast Krylov-Newton code for dipole quantum control problems, Computer Physics Communications, 181, 2158 (2010).

  • G. von Winckel, A. Borzì, and S. Volkwein, A globalized Newton method for the accurate solution of a dipole quantum control problem, SIAM J. Sci. Comput. 31, 4176 (2009).

  • H. M. Wiseman and G. J. Milburn, Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere, Phys. Rev. A 47, 1652 (1993). [PubMed] [Crossref]

  • R. Wu, A. Pechen, C. Brif, and H. Rabitz, Controllability of open quantum systems with Kraus-map dynamics, J. Phys. A: Math. Theor. 40, 5681 (2007). [Crossref]

  • H. Yserentant, Regularity and Approximability of Electronic Wave Functions, Lecture Notes, Berlin, (2009).

About the article

Received: 2012-09-26

Revised: 2012-11-07

Accepted: 2012-11-24

Published Online: 2012-11-29

Citation Information: Nanoscale Systems: Mathematical Modeling, Theory and Applications, ISSN (Online) 2299-3290, DOI: https://doi.org/10.2478/nsmmt-2012-0007. Export Citation

©2012 Versita Sp. z o.o.. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

G. Ciaramella, J. Salomon, and A. Borzì
International Journal of Control, 2015, Volume 88, Number 4, Page 682
Michael Keyl, Robert Zeier, and Thomas Schulte-Herbrüggen
New Journal of Physics, 2014, Volume 16, Number 6, Page 065010

Comments (0)

Please log in or register to comment.
Log in