A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello. Self-assembly of
nanoparticles into structured spherical and network aggregates. Nature, 404, 746–748 (2000).

C. A. Mirkin. Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale
inorganic building blocks. Inorg. Chem., 39, 2258–2272 (2000).

P. Moriarty. Nanostructured materials. Reports on Progress in Physics, 64, 297–381 (2001).

P. Scharff and E. Buzaneva, editors. Frontiers of Multifunctional Integrated Nanosystems. Springer, Berlin (2004).

Y. Yin and A. P. Alivisatos. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 437,
664–670 (2004).

M.P. Pileni. Slef-assembly of inorganic nanocrystals: Fabrication and collective intrinsic properties. Acc. Chem.
Res., 40, 685–693 (2007).
[Crossref]

M. O. Blunt, C. P. Martin, M. Ahola-Tuomi, E. Pauliac-Vaujour, P. Sharp, P. Nativo, M. Brust, and P. Moriarty.
Coerced mechanical coarsening of nanoparticle assemblies. Nature Nanotechnology, 2, 167–170 (2007).
[PubMed] [Crossref]

B. Tadic. From microscopic rules to emergent cooperativity in large-scale patterns, in "Systems self-assembly:
Multidisciplinary snapshots", N. Krasnogor, S. Gustafson, D.A. Pelta and J.L. Verdegay, editors. Volume 5, Studies
in multidisciplinarity, Elsevier, Amsterdam, pp. 259-278 (2008).

E. Barkai, F.L.H. Brown, M. Orrit, and H. Yang, editors. Theory and Evaluation of Single-Molecule Signals. World
Scientific, Singapore (2008).

I. Kotsireas, R.V.N. Melnik, and B. West, editors. Advances in Mathematical and Computational Methods: Addressing
Modern Challenges of Science, Technology and Society. American Institute of Physics Vol. 1368 (2011).

P. R. Villas Boas, F. A. Rodrigues, G. Travieso, and L. da Fontoura Costa. Chain motifs: The tails and handles of
complex networks. Physical Review E, 77, 026106 (2008).

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D-U. Hwang. Complex networks: Structure and dynamics.
Physics Reports, 424, 175–308 (2006).

B. Bollobás. Modern Graph Theory. Springer, New York (1998).

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms and Applications. Prentice-Hall
International, Ltd., London, UK (1993).

B.H. Junker and F. Schreiber, editors. Analysis of biological networks. A Wiley Interscience Publication, Hoboken,
New Jersey (2008).

V. Janjic and N. Pržulj. The core diseasome. Molecular BioSystems, 8, 2614–2625 (2012).
[Crossref] [PubMed]

R.N. Mantegna and E.H. Stanley. An introduction to econophysics: correlations and complexity in finance. Cambridge
University Press, Cambridge, UK (2000).

P.J. Carrington, J. Scott, and S. Wasserman, editors. Models and methods in social network analysis. Cambridge
University Press, Cambridge, UK (2005).

J. Giles. Computational social science: Making the links. Nature, 488, 448–450 (2012).

M. Mitrovic, G. Paltoglou, and B. Tadic. Quantitative analysis of bloggers’ collective behavior powered by emotions.
Journal of Statistical Mechanics: Theory and Experiment, P02005 (2011). DOI:10.1088/1742-5468/2011/02/P02005
[Crossref]

J. Živkovic, M. Mitrovic, L. Janssen, H. A. Heus, B. Tadic, and S. Speller. Network theory approach for data evaluation
in the dynamic force spectroscopy of biomolecular interactions. Europhysics Letters, 89, 68004 (2010).

D.J. Lockhart and E.A. Winzler. Genomics, gene expression and DNA arrays. Nature, 405, 827–836 (2000).

M. Lynch. The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics, 8, 803–813
(2007).
[PubMed] [Crossref]

S.J. Dixon, M. Costanzo, A. Baryshnikova, B. Andrews, and Ch. Boone. Systematic mapping of genetic interaction
networks. Annual Review of Genetics, 43, 601–625 (2009).
[PubMed] [Crossref]

D. Stokic, R. Hanel, and S. Thurner. A fast and efficient gene-network reconstruction method from multiple overexpression
experiments. arXiv:0806.3048 (2008).

A. Madi, Y. Friedman, D. Roth, T. Regev, S. Bransburg-Zabary, and E.B. Jacob. Genome holography: Deciphering
function-form motifs from gene expression data. PLoS ONE, 3, e2708 (2008).

J. Živkovic, B. Tadic, N. Wick, and S. Thurner. Statistical indicators of collective behavior and functional clusters in
gene networks of yeast. European Physical Journal B, 50, 255–258 (2006).
[Crossref]

J. Živkovic, M. Mitrovic, and B. Tadic. Correlation patterns in gene expressions along the cell cycle of yeast. In
S. Fortunato, G. Mangioni, R. Menezes, and V. Nicosia, editors. Complex Networks, volume 207 of Studies in
Computational Intelligence, Springer, Berlin / Heidelberg, pp. 23–34 (2009). DOI:10.1007/978-3-642-01206-8−3.
[Crossref]

M. Šuvakov and B. Tadic. Modeling collective charge transport in nanoparticle assemblies. Journal of Physics:
Condensed Matter, 22, 163201, (2010). DOI:10.1088/0953-8984/22/16/163201.
[Crossref]

N. Goubet, H. Portales, C. Yan, I. Arfaoui, P-A. Albouy, A. Mermet, and M-P. Pileni. Simultaneous growth of gold
colloidal crystals. JACS, 134, 3714–3719 (2012).

K. Lee, V.P. Drachev, and J. Irudayaraj. DNA–gold nanoparticle reversible networks grown on cell surface marker
sites: Application in diagnostics. ACS NANO, 5, 2109–2117 (2011).
[PubMed] [Crossref]

L. Hu, H. Wu, S.S. Hong, L. Cui, J.R. McDonough, S. Bohy, and Y. Cui. Si nanoparticle-decorated Si nanowire
networks for Li-ion batery anodes. Chem. Comm., 47, 367-369 (2011).

G. Trefalt, B. Tadic, and M. Kosec. Formation of colloidal assemblies in suspensions for Pb(Mg1/3Nb2/3)O3 synthesis:
Monte carlo simulation study. Soft Matter, 7, 5566–5577 (2011).

C. P. Martin, M. O. Blunt, and P. Moriarty. Nanoparticle networks on silicon: Self-organized or disorganized?
Nano Letters, 4, 2389–2392 (2004).
[Crossref]

M. O. Blunt, M. Šuvakov, F. Pulizzi, C. P. Martin, E. Pauliac-Vaujour, A. Stannard, A.W. Rushforth, B. Tadic, and
P. Moriarty. Charge transport in cellular nanoparticle networks: meandering through nanoscale mazes. Nano
Letters, 7, 855–860 (2007).
[Crossref] [PubMed]

M. Blunt, A. Stannard, E. Pauliac-Vaujour, C. Martin, I. Vancea, M. Šuvakov, U. Thiele, B. Tadic, and P. Moriarty.
Pattrens and pathways in nanoparticle self-organization, in book "Nanoscience and Nanotechnology, Part I: Physcs
and Chemistry of Nanomaterials" , A.V. Narlikar and Y.Y.Fu, editors. Oxford University Press, Oxford, UK pp. 214–248
(2008).

T. Narumi, M. Suzuki, Y. Hidaka, and S. Kai. Size dependence of current-voltage properties in Coulomb blockade
networks. Journal of the Physical Soc. Japan, 80, 114704 (2011).

D. Joung, L. Zhai, and S.I. Khondaker. Coulomb blockade and hopping conduction in graphene quantum dots array.
Physical Review B, 83, 115323 (2011).

A.R. Botello-Méndez, E. Cruz-Silva, J.M. Romo-Herrera, F. López-Urıas, M. Terrones, B. G. Sumpter et al. Quantum
transport in graphene nanonetworks. Nano Letters, 11, 3058–3064 (2011).
[Crossref]

J. Park, S. Wang, M. Li, C. Ahn, J. K. Hyun, D. S. Kim, et al. Three-dimensional nanonetworks for giant stretchability
in dielectrics and conductors. Nature Communications, 3, 916 (2012). DOI:10.1038/ncomms1929
[Crossref] [PubMed]

W. C. T. Lee, C. E. Kendrick, R. P. Millane, Z. Liu, S. P. Ringer, K. Washburn et al. Porous ZnO nanonetworks grown
by molecular beam epitaxy, Journal of Physics D—Applied Physics, 45, 135301 (2012).

M. Gregori, I. Llatser, A. Cabellos-Aparicio, and E. Alarcon. Physical channel characterization for medium-range
nanonetworks using flagellated bacteria Computer Networks, 55, 779–791 (2011).

J.M. Bower and H. Bolouri, editors. Computational Modeling of Genetic and Biochemical Networks. A Bradford
Book, The Massachusetts Institute of Technology Press, Cambridge, Massachusetts (2001).

I. F. Akyldiz, F. Brunetti, and C. Blázquez. Nanonetworks: A new communication paradigm Computer Networks 52,
2260–2279 (2008).

B. Atakan, S. Galmés, and O. B. Akan. Nanoscale Communication with Molecular Arrays in Nanonetworks, IEEE
Transactions on Nanobioscience, 11, 149–160 (2012).
[Crossref]

T. Nakano, Biologically Inspired Network Systems: A Review and Future Prospects, Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 41, 630–643 (2011).

S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks. Oxford University Press, Oxford, UK (2003).

S. N. Dorogovtsev. Lectures on Complex Networks. Oxford University Press, Inc., New York, USA (2010).

M. Mitrovic and B. Tadic. Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities.
Physical Review E, 80, 026123 (2009).

E. Estrada. Application of a novel graph-theoretic folding degree index to the study of steroid–DB3 antibody binding
affinity. Computational Biology and Chemistry, 27, 305–313 (2003).
[Crossref]

Zh. Du. An edge grafting theorem on the Estrada index of graphs and its applications. Discrete Appl. Math., 161,
134–139 (2013).

Y. Shang. Perturbation results for the Estrada index in weighted networks. Journal of Physics A: Mathematical and
Theoretical, 44, 075003 (2011).

S. Fortunato. Community detection in graphs. Physics Reports, 486, 75–174 (2010).

V.D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment, 2008, P10008 (2008).

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
[PubMed]

http://www.cytoscape.org/

https://gephi.org/

N.J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, Sh. Pu, N. Datta, et al. Global landscape
of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440, 637–643 (2006).

V. Memiševic and N. Pržulj. C-GRAAL: Common-neighbors-based global graph alignment of biological networks.
Integrative Biology, 4, 734–743 (2012). DOI:10.1039/c2ib00140c.
[PubMed] [Crossref]

Th.J. Perkins, J. Jaeger, J. Reinitz, and L. Glass. Reverse engineering the gap gene network of drosophila
melanogaster. PLoS Comput. Biol., 2, e51 (2006).
[Crossref]

T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, et al. Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 298, 799-804 (2002).

S. Balaji, M. M. Babu, L. M. Iyer, N.M. Luscombe, and L. Aravind. Comprehensive analysis of combinatorial
regulation using the transcriptional regulatory network of yeast. J. Mol. Biol., 360, 213–227 (2006).

J. Wang, Ch. Lia, E. Wang, and X. Wang. Uncovering the rules for protein-protein interactions from yeast genomic
data. PNAS, 106, 3752–3757 (2009).

R.J. Cho, M.J. Campbell, E.A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, et al. A genome-wide transcriptional
analysis of the mitotic cell cycle. Molecular Cell, 2, 65–73 (1998).
[PubMed] [Crossref]

B. Lewin. Genes VIII. Pearson Prentis Hall, London, UK (2004).

Ch.T. Liu, S. Yuan, and K.-C. Li. Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae.
Nucleic Acids Research, 37, 526–532 (2009).

M. Abel, K. Ahnert, J. Kurths, and S. Mandelj. Additive nonparametric reconstruction of dynamical systems from
time series. Physical Review E, 71, 015203 (2005).

I. Baruchi and E. Ben-Jacob. Functional holography of recorded neuronal networks activity. Neuroinformatics, 2,
333–351 (2004).
[PubMed] [Crossref]

B. Tadic and M. Mitrovic. Jamming and correlation patterns in traffic of information on sparse modular networks.
The European Physical Journal B - Condensed Matter and Complex Systems, 71, 631–640 (2009).
DOI:10.1140/epjb/e2009-00190-7.
[Crossref]

MIPS Saccharomyces cerevisiae genome database. http://mips.helmholtz-muenchen.de/proj/yeast/
info/guide/cygd_index.html

S.Y. Park, A.K.R. Lytton-Jean, B. Lee, S. Weigand, G.C. Schatz, and C.A. Mirkin. DNA-programable nanoparticle
crystallyzation. Nature, 451, 553–556 (2008).

D. Nykypanchuk, M.M. Maye, D. van der Lelie, and O. Gang. DNA-guided crystallization of colloidal nanoparticles.
Nature, 451, 549–552 (2008).

B. Tadic, K. Malarz, and K. Kulakowski. Magnetization reversal in spin patterns with complex geometry. Physical
Review Letters, 94, 137204 (2005).

B. Tadic, G.J. Rodgers, and S. Thurner. Transport on complex networks: Flow, jamming and optimization. International
Journal of Bifurcation and Chaos, 17, 2363–2385 (2007).
[Crossref]

A. Zabet-Khosousi and A.A. Dhirani. Charge transport in nanoparticle assemblies. Chem. Rev., 108, 4072–124
(2008).

K.P. Loh, Q. Bao, G. Eda, and M. Chhowalla. Graphene oxide as chemically tunnable platform for optical applications.
Nature Chemistry, 2, 1015–1024 (2010).
[Crossref]

M. Šuvakov and B. Tadic. Collective charge fluctuations in single-electron processes on nanonetworks.
Journal of Statistical Mechanics: Theory and Experiment, P02015-1-P02015-15 (2009). DOI:10.1088/1742-
5468/2009/02/P02015
[Crossref]

E. Zaccarelli. Colloidal gells: equilibrium and nonequilibrium routes. Journal of Physics: Condensed Matter, 32,
323101 (2007).
[Crossref]

M. Šuvakov and B. Tadic. Topology of cell-aggregated planar graphs. In V. Alexandrov, G. van Albada, P. Sloot,
and J. Dongarra, editors, Computational Science ICCS 2006, volume 3993 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 1098–1105 (2006).

M. Šuvakov and B. Tadic. Simulation of the electron tunneling paths in networks of nano-particle films. In Y. Shi,
G. van Albada, J. Dongarra, and P. Sloot, editors, Computational Science ICCS 2007, volume 4488 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, pp. 641–648 (2007).

A. A. Middleton and N. S. Wingreen. Collective transport in arrays of small metallic dots. Physical Review Letters,
71, 3198–3201 (1993).

C. I. Duruöz, R. M. Clarke, C. M. Marcus, and J. S. Harris, Jr. Conduction threshold, switching, and hysteresis in
quantum dot arrays. Physical Review Letters, 74, 3237–3240 (1995).
[PubMed] [Crossref]

J. Živkovic, AFM Study on RNA and Protein Complexes, PhD Thesis, Radboud University, Nijmegen, The Netherlands
(2012).

J. Živkovic, L. Janssen, F. Alvarado, S. Speller, and H.A. Heus. Force spectroscopy of Rev-peptide-RRE interaction
from HIV–1. Soft Matter, 8, 2103–2109 (2012).
[Crossref]

O.K. Dudko, G. Hummer, and A. Szabo. Theory, analysis, and interpretation of single-molecule force spectroscopy
experiments. PNAS, 105, 15755–15760 (2008).

Received: 2012-11-12Revised: 2013-01-04Accepted: 2013-01-24Published Online: 2013-02-15Citation Information:Nanoscale Systems: Mathematical Modeling, Theory and Applications. Volume 2, Pages 30–48, ISSN (Online) 2299-3290, DOI: https://doi.org/10.2478/nsmmt-2013-0003, February 2013©2013 Versita Sp. z o.o.. This content is open access.