Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year


IMPACT FACTOR 2017: 1.904
5-year IMPACT FACTOR: 1.945

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.544
Source Normalized Impact per Paper (SNIP) 2017: 0.528

Online
ISSN
2191-9097
See all formats and pricing
More options …
Volume 2, Issue 3

Issues

Nanostructured phase-changeable heat transfer fluids

Jiajun Xu / Bao Yang
Published Online: 2013-05-28 | DOI: https://doi.org/10.1515/ntrev-2012-0041

Abstract

Cooling is one of the most important technique challenges faced by a range of diverse industries and military needs. There is an urgent need for the innovative heat transfer fluids with improved thermal properties over the currently available. This review paper discusses the concept of using phase-changeable nanoparticles to increase the effective heat capacity and the heat transfer rate of the fluid. A large amount of heat can be absorbed or released when these nanoparticles undergo phase transition from solid to liquid or liquid to gas or vice versa and, thus, enhancing the heat transfer rate. Two types of phase-change fluids are introduced: one contains liquid nanodroplets that will evaporate at elevated temperatures or solidifies at reduced temperatures, called “nanoemulsion fluids”; the other is suspensions of solid-liquid metallic phase-change nanoparticles. The material synthesis and property characterizations of these phase-changeable fluids are two main aspects of this paper. The explosive vaporization of the dispersed nanodroplets would significantly improve the heat transfer in the nanoemulsion fluid. The solid-liquid metallic phase-change nanoparticles will increase the effective heat capacity and thermal conductivity of the base fluids simultaneously. This paper also identifies the several critical issues in the phase-changeable fluids to be solved in the future.

Keywords: nanoemulsion fluids; nanoparticles; phase-change material

References

  • [1]

    Eastman JA, Phillpot SR, Choi SUS, Keblinski P. Thermal transport in nanofluids. Annu. Rev. Mater. Res. 2004, 34, 219–246.CrossrefGoogle Scholar

  • [2]

    Eastman LJ, Choi SUS, Ll S, Thompson LJ. Enhanced thermal conductivity through development of nanofluids. Nanocryst. Nanocompos. Mater. II. 1997, 457, 3–14.Google Scholar

  • [3]

    Inaba H. New challenge in advanced thermal energy transportation using functionally thermal fluids. Int. J. Therm. Sci. 2000, 39, 991–1003.CrossrefGoogle Scholar

  • [4]

    Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu LW, Alvarado JL, Bang J, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Paola RD, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim G, Kim JH, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PW, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Vaerenbergh SV, Wen D, Witharana S, Yang C, Yeh WH, Zhao XZ, Zhou SQ. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. Nov 1 2009, 106.Google Scholar

  • [5]

    Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252–2254.CrossrefGoogle Scholar

  • [6]

    Zimparov V. Energy conservation through heat transfer enhancement techniques. Int. J. Energy Res. 2002, 26, 675–696.CrossrefGoogle Scholar

  • [7]

    Dewan A, Mahanta P, Raju KS, Kumar PS. Review of passive heat transfer augmentation techniques. Proc. Inst. Mech. Eng. A-J. Power Energy Nov. 2004, 218, 509–527.CrossrefGoogle Scholar

  • [8]

    Boyd RD. Subcooled flow boiling critical heat-flux (CHF) and its application to fusion energy components. 1. A review of fundamentals of CHF and related data-base. Fusion Technol. 1985, 7, 7–30.Google Scholar

  • [9]

    Maxwell JC. A Treatise on Electricity and Magnetism, 2nd ed., Cambridge, UK: Oxford University Press, 1904.Google Scholar

  • [10]

    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720.CrossrefGoogle Scholar

  • [11]

    Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 2002, 45, 855–863.CrossrefGoogle Scholar

  • [12]

    Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf.-Trans. ASME 2003, 125, 567–574.CrossrefGoogle Scholar

  • [13]

    Xuan YM, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf.-Trans. ASME 2003, 125, 151–155.CrossrefGoogle Scholar

  • [14]

    Wen DS, Ding YL. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids). J. Thermophys. Heat Transf. 2004, 18, 481–485.CrossrefGoogle Scholar

  • [15]

    Wen DS, Ding YL. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 2004, 47, 5181–5188.CrossrefGoogle Scholar

  • [16]

    Hong T-K, Yang H-S, Choi CJ. Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys. 2005, 97, 64311-1-4.CrossrefGoogle Scholar

  • [17]

    Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 2005, 48, 1107–1116.CrossrefGoogle Scholar

  • [18]

    Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 2006, 49, 240–250.CrossrefGoogle Scholar

  • [19]

    Heris SZ, Etemad SGh, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transf. 2006, 33, 529–535.CrossrefGoogle Scholar

  • [20]

    Kim SJ, Bang IC, Buongiorno J, Hu LW. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl. Phys. Lett. 2006, 89.Google Scholar

  • [21]

    Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 2006, 99.Google Scholar

  • [22]

    Ma HB, Wilson C, Borgmeyer B, Park K, Yu Q, Choi SUS, Tirumala M. Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Appl. Phys. Lett. 2006, 88, 143116–143119.CrossrefGoogle Scholar

  • [23]

    Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 2006, 89, 143119–143122.CrossrefGoogle Scholar

  • [24]

    Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 2006, 89, 133108–133111.CrossrefGoogle Scholar

  • [25]

    Yang B, Han ZH. Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl. Phys. Lett. 2006, 89, 083111–083114.CrossrefGoogle Scholar

  • [26]

    Chein R, Chuang J. Experimental microchannel heat sink performance studies using nanofluids. Int. J. Therm. Sci. 2007, 46, 57–66.CrossrefGoogle Scholar

  • [27]

    Han ZH, Yang B, Kim SH, Zachariah MR. Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 2007, 18, 105701–105705.CrossrefGoogle Scholar

  • [28]

    Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Commun. Heat Mass Transf. 2007, 34, 534–543.CrossrefGoogle Scholar

  • [29]

    Kim SJ, Bang IC, Buongiorno J, Hu LW. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 2007, 50, 4105–4116.CrossrefGoogle Scholar

  • [30]

    Lee J, Mudawar I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int. J. Heat Mass Transf. 2007, 50, 452–463.CrossrefGoogle Scholar

  • [31]

    Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew. Sust. Energy Rev. 2007, 11, 512–523.CrossrefGoogle Scholar

  • [32]

    Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 2007, 46, 1–19.CrossrefGoogle Scholar

  • [33]

    Han ZH, Cao FY, Yang B. Synthesis and thermal characterization of phase-changeable indium/polyalphaolefin nanofluids. Appl. Phys. Lett. 2008, 92, 243104–243107.CrossrefGoogle Scholar

  • [34]

    Liu Z-H, Liao L. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int. J. Heat Mass Transf. 2008, 51, 2593–2602.CrossrefGoogle Scholar

  • [35]

    Milanova D, Kumar R. Heat transfer behavior of silica nanoparticles experiment in pool boiling. J. Heat Transf.-Trans. ASME 2008, 130.Google Scholar

  • [36]

    Wang XQ, Mujumdar AS. A review on nanofluids – Part I: Theoretical and numerical investigations. Braz. J. Chem. Eng. 2008, 25, 613–630.Google Scholar

  • [37]

    Wang XQ, Mujumdar AS. A review on nanofluids – Part II: Experiments and applications. Braz. J. Chem. Eng. 2008, 25, 631–648.CrossrefGoogle Scholar

  • [38]

    Wen D, Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). Int. J. Heat Mass Transf. 2008, 51, 4958–4965.CrossrefGoogle Scholar

  • [39]

    Yang B. Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J. Heat Transf.-Trans. ASME 2008, 130, 042408–042413.CrossrefGoogle Scholar

  • [40]

    Özerinç S, Kakaç S, Yazıcıoğlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid. Nanofluid. 2010, 8, 145–170.CrossrefGoogle Scholar

  • [41]

    Kim SJ, McKrell T, Buongiorno J, Hu L-W. Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water, and diamond-water nanofluids. J. Heat Transf.-Trans. ASME 2009, 131, 043204–043211.CrossrefGoogle Scholar

  • [42]

    Shima PD, Philip J, Raj B. Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J. Phys. Chem. C 2010, 114, 18825–18833.CrossrefGoogle Scholar

  • [43]

    Kim H. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review. Nanoscale Res. Lett. 2011, 6, 415–433.CrossrefGoogle Scholar

  • [44]

    Rana P, Bhargava R. Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4318–4334.CrossrefGoogle Scholar

  • [45]

    Barber J, Brutin D, Tadrist L. A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res. Lett. 2011, 6, 280–296.CrossrefGoogle Scholar

  • [46]

    Sohel Murshed SM, Nieto de Castro CA, Lourenço MJV, Lopes MLM, Santos FJV. A review of boiling and convective heat transfer with nanofluids. Renew. Sust. Energy Rev. 2011, 15, 2342–2354.CrossrefGoogle Scholar

  • [47]

    Sergis A, Hardalupas Y. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res. Lett. 2011, 6, 391–402.CrossrefGoogle Scholar

  • [48]

    Ahn HS, Kim MH. A review on critical heat flux enhancement with nanofluids and surface modification. J. Heat Transf.-Trans. ASME 2012, 134.Google Scholar

  • [49]

    Kim SJ, McKrell T, Buongiorno J. Alumina nanoparticles enhance the flow boiling critical heat flux of water at low pressure. J. Heat Transf.-Trans. ASME 2008, 130, 044501–044504.CrossrefGoogle Scholar

  • [50]

    Shima PD, Philip J, Raj B. Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Appl. Phys. Lett. 2009, 95, 133112–133115.CrossrefGoogle Scholar

  • [51]

    Philip J, Shima PD. Thermal properties of nanofluids. Adv. Colloid Interface Sci. 2012, 183, 30–45.CrossrefGoogle Scholar

  • [52]

    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 1998, 11, 151–170.Google Scholar

  • [53]

    Coursey JS, Kim J. Nanofluid boiling: the effect of surface wettability. Int. J. Heat Fluid Flow 2008, 29, 1577–1585.Google Scholar

  • [54]

    Jeong YH, Chang WJ, Chang SH. Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids. Int. J. Heat Mass Transf. 2008, 51, 3025–3031.CrossrefGoogle Scholar

  • [55]

    Eapen J, Li J, Yip S. Mechanism of thermal transport in dilute nanocolloids. Phys. Rev. Lett. 2007, 98.CrossrefGoogle Scholar

  • [56]

    Younes H, Christensen G, Luan X, Hong H, Smith P. Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles. J. Appl. Phys. 2012, 111.Google Scholar

  • [57]

    Angayarkanni SA, Philip J. Role of surface charge, morphology, and adsorbed moieties on thermal conductivity enhancement of nanofluids. Appl. Phys. Lett. 2012, 101.Google Scholar

  • [58]

    Xu JJ, Wu CW, Yang B. Thermal- and phase-change characteristics of self-assembled ethanol/polyalphaolefin nanoemulsion fluids. J. Thermophys. Heat Transf. 2010, 24, 208–211.CrossrefGoogle Scholar

  • [59]

    Xu J, Yang B, Hammouda B. Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids. Nanoscale Res. Lett. 2011, 6, 274–280.CrossrefGoogle Scholar

  • [60]

    Xu J, Yang B. Thermophysical properties and pool boiling characteristics of water in polyalphaolefin nanoemulsion fluids. In Proceedings of ASME Micro/Nanoscale Heat and Mass Transfer International Conference 2012: ASME, 2012.Google Scholar

  • [61]

    Xu J. Yang B. Novel heat transfer fluids: self-assembled nanoemulsion fluids. In Nantotechnology. vol. Synthesis and Characterization, Govil DJN, Ed., Studium Press LLC, 2012.Google Scholar

  • [62]

    Yang B, Han ZH. Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids. Appl. Phys. Lett. 2006, 88, 261914–261917.CrossrefGoogle Scholar

  • [63]

    Han ZH, Yang B. Thermophysical characteristics of water-in-FC72 nanoemulsion fluids. Appl. Phys. Lett. 2008, 92.Google Scholar

  • [64]

    Han ZH, Yang B, Qi Y, Cumings J. Synthesis of low-melting-point metallic nanoparticles with an ultrasonic nanoemulsion method. Ultrasonics 2011, 51, 485–488.CrossrefGoogle Scholar

  • [65]

    Mills AF, Basic Heat and Mass Transfer, 2nd ed. New Jersey: Prentice Hall, Inc., 1999.Google Scholar

  • [66]

    Sharma SD, Kitano H, Sagara K. Phase change materials for low temperature solar thermal applications Res. Rep. Fac. Eng. Mie Univ. 2004, 29, 31–64.Google Scholar

  • [67]

    Osterman E, Tyagi VV, Butala V, Rahim NA, Stritih U. Review of PCM based cooling technologies for buildings. Energy Buildings 2012, 49, 37–49.CrossrefGoogle Scholar

  • [68]

    Chen SJ, et al. Properties and structure of 3-component ionic microemulsions. J. Phys. Chem. 1984, 88, 1631–1634.Google Scholar

  • [69]

    Ruckenstein E, The surface of tension, the natural radius, and the interfacial-tension in the thermodynamics of microemulsions. J. Colloid Interface Sci. 1986, 114, 173–179.CrossrefGoogle Scholar

  • [70]

    Siano DB, Bock J, Myer P, Russel WB. Thermodynamics and hydrodynamics of a nonionic microemulsion. Colloids Surf. 1987, 26, 171–190.CrossrefGoogle Scholar

  • [71]

    Rosano HL, Cavallo JL, Chang DL, Whittam JH. Microemulsions – a commentary on their preparation. J. Soc. Cosmet. Chem. 1988, 39, 201–209.Google Scholar

  • [72]

    Chen ZQ, Chen L, Hao CE, Zhang C. Thermodynamics of microemulsion. 1. The effect of alkyl chain-length of alkyl aromatics. Acta Chim. Sinica 1990, 48, 528–533.Google Scholar

  • [73]

    Moulik SP, Das ML, Bhattacharya PK, Das AR. Thermodynamics of microemulsion formation. 1. Enthalpy of solution of water in binary (triton-x 100+butanol) and ternary (heptane+triton-x 100+butanol) mixtures and heat-capacity of the resulting systems. Langmuir 1992, 8, 2135–2139.Google Scholar

  • [74]

    Moulik SP, Ray S. Thermodynamics of clustering of droplets in water/AOT/heptane microemulsion. Pure Appl. Chem. 1994, 66, 521–525.CrossrefGoogle Scholar

  • [75]

    Ray S, Bisal SR, Moulik SP. Thermodynamics of microemulsion formation. 2. Enthalpy of solution of water in binary-mixtures of aerosol-OT and heptane and heat-capacity of the resulting systems. Langmuir 1994, 10, 2507–2510.Google Scholar

  • [76]

    Strey R. Microemulsion microstructure and interfacial curvature. Colloid Polym. Sci. 1994, 272, 1005–1019.CrossrefGoogle Scholar

  • [77]

    Bergenholtz J, Romagnoli AA, Wagner NJ. Viscosity, microstructure, and interparticle potential of AOT/H2O/n-decane inverse microemulsions. Langmuir 1995, 11, 1559–1570.CrossrefGoogle Scholar

  • [78]

    Mukherjee K, Mukherjee DC, Moulik SP. Thermodynamics of microemulsion formation.3. Enthalpies of solution of water in chloroform as well as chloroform in water aided by cationic, anionic, and nonionic surfactants. J. Colloid Interface Sci. 1997, 187, 327–333.CrossrefGoogle Scholar

  • [79]

    Kumar P, Mittal KL. Handbook of Microemulsion Science and Technology, New York: Marcel Dekker, 1999.Google Scholar

  • [80]

    Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat. Drug Deliv. Formul. 2008, 2, 238–257.CrossrefGoogle Scholar

  • [81]

    Wu C, Cho TJ, Xu J, Lee D, Yang B, Zachariah MR. Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys. Rev. E 2010, 81, 011406–011413.CrossrefGoogle Scholar

  • [82]

    Tyndall J. On the blue colour of the sky, the polarization of sky-light, and on the polarization of light by cloudy matter generally. vol. 17. In Proceedings of the Royal Society of London, 1868, p. 223.Google Scholar

  • [83]

    He GS, Qin H, Zheng Q. Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences. J. Appl. Phys. 2009, 105, 023110–023120.CrossrefGoogle Scholar

  • [84]

    Rosele ML. Boiling of Dilute Emulsions. PhD dissertation, University of Minnesota, 2011.Google Scholar

  • [85]

    Bulanov NV, Skripov VP, Khmyl’nin VA. Heat transfer to emulsion with superheating of its disperse phase. J. Eng. Phys. 1984, 46, 1–3.Google Scholar

  • [86]

    Bulanov NV. Heat transfer to emulsion with a low-boiling disperse phase. Heat Transf. Res. 1993, 25, 786–789.Google Scholar

  • [87]

    Bulanov NV. An analysis of the heat flux density under conditions of boiling internal phase of emulsion. High Temp. 2001, 39, 462–469.CrossrefGoogle Scholar

  • [88]

    Bulanov NV, Gasanov BM. Experimental setup for studying the chain activation of low-temperature boiling sites in superheated liquid droplets. Colloid J. 2005, 67, 531–536.CrossrefGoogle Scholar

  • [89]

    Bulanov NV, Gasanov B, Turchaninova E. Results of experimental investigation of heat transfer with emulsions with low-boiling disperse phase. High Temp. 2006, 44, 267–282.CrossrefGoogle Scholar

  • [90]

    Bulanov NV Gasanov BM. Peculiarities of boiling of emulsions with a low-boiling disperse phase. Int. J. Heat Mass Transf. 2008, 51, 1628–1632.CrossrefGoogle Scholar

  • [91]

    Lunde DM. Boiling Dilute Emulsions on a Heated Strip. MS thesis, University of Minnesota, 2011.Google Scholar

  • [92]

    Haque O, Scamehorn JF. Thermodynamics of microemulsion formation by mixtures of anionic and nonionic surfactants. J. Dispers. Sci. Technol. 1986, 7, 129–157.CrossrefGoogle Scholar

  • [93]

    Mukhopadhyay L, Mitra N, Bhattacharya PK, Moulik SP. Thermodynamics of formation of biological microemulsion (with cinnamic alcohol, aerosol OT, Tween 20, and water) and kinetics of alkaline fading of crystal violet in them. J. Colloid Interface Sci. 1997, 186, 1–8.Google Scholar

  • [94]

    De M, Bhattacharya SC, Panda AK, Moulik SP. Interfacial behavior, structure, and thermodynamics of water in oil microemulsion formation in relation to the variation of surfactant head group and cosurfactant. J. Dispers, Sci. Technol. 2009, 30, 1262–1272.Google Scholar

  • [95]

    Moulik SP, Paul BK. Structure, dynamics and transport properties of microemulsions. Adv. Colloid Interface Sci. 1998, 78, 99–195.CrossrefGoogle Scholar

  • [96]

    Chen SH. Small-angle neutron-scattering studies of the structure and interaction in micellar and microemulsion systems. Annu. Rev. Phys. Chem. 1986, 37, 351–399.CrossrefGoogle Scholar

  • [97]

    Smith RD, Blitz JP, Fulton JL. Structure of reverse micelle and microemulsion phases in near-critical and supercritical fluid as determined from dynamic light-scattering-studies. ACS Symp. Ser. 1989, 406, 165–183.Google Scholar

  • [98]

    Nyden M, Soderman O. Structures and emulsification failure in the microemulsion phase in the didodecyldimethylammonium sulfate/hydrocarbon/water system – a self-diffusion NMR-study. Langmuir 1995, 11, 1537–1545.CrossrefGoogle Scholar

  • [99]

    Hirai M, Takizawa T, Yabuki S, Kawai-Hirai R, Oya M, Nakamura K, Kobashi K, Amemiya Y. Structure and reactivity of aerosol-OT reversed micelles containing alpha-chymotrypsin. J. Chem. Soc.-Farad. Trans. 1995, 91, 1081–1089.Google Scholar

  • [100]

    Hirai M, Hirai RK, Iwase H, Arai S, Mitsuya S, Takeda T, Seto H, Nagao M. Dynamics of w/o AOT microemulsions studied by neutron spin echo. J. Phys. Chem. Solids 1999, 60, 1359–1361.CrossrefGoogle Scholar

  • [101]

    Kotlarchyk M, Chen SH, Huang JS. Temperature-dependence of size and polydispersity in a 3-component micro-emulsion by small-angle neutron-scattering. J. Phys. Chem. 1982, 86, 3273–3276.Google Scholar

  • [102]

    Kaler EW, Bennett KE, Davis HT, Scriven LE. Toward understanding microemulsion microstructure – a small-angle X-ray-scattering study. J. Chem. Phys. 1983, 79, 5673–5684.CrossrefGoogle Scholar

  • [103]

    Howe AM, Toprakcioglu C, Dore JC, Robinson BH. Small-angle neutron-scattering studies of microemulsions stabilized by aerosol-OT. 3. The effect of additives on phase-stability and droplet structure. J. Chem. Soc.-Farad. Trans. I 1986, 82, 2411–2422.CrossrefGoogle Scholar

  • [104]

    Hammouda B, Krueger S, Glinka CJ. Small-angle neutron-scattering at the National-Institute-of-Standards-and-Technology. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 31–46.CrossrefGoogle Scholar

  • [105]

    Hammouda B. A new Guinier-Porod model. J. Appl. Crystallogr. 2010, 43, 716–719.CrossrefGoogle Scholar

  • [106]

    Hammouda B. SANS from polymers—review of the recent literature. Polym. Rev. 2010, 50, 14–39.CrossrefGoogle Scholar

  • [107]

    Regev O, Ezrahi S, Aserin A, Garti N, Wachtel E, Kaler EW, Khan A, Talmon Y. A study of the microstructure of a four-component nonionic microemulsion by cryo-TEM, NMR, SAXS, and SANS. Langmuir 1996, 12, 668–674.CrossrefGoogle Scholar

  • [108]

    Cahill DG, Thermal-conductivity measurement from 30-K to 750-K – the 3-omega method. Rev. Sci. Instrum. 1990, 61, 802–808.CrossrefGoogle Scholar

  • [109]

    Touloukian YS, Liley PE, Saxena SC. Thermal conductivity for nonmetallic liquids and gases, vol. 3. In Thermophysical Properties of Matters, Washington: IFI/PLENUM, 1970.Google Scholar

  • [110]

    Synfluid PAO Databook, Chveron Philips Chemical LP, 2002.Google Scholar

  • [111]

    Batra U, Russel WB, Huang JS. Viscosity anomaly and charge fluctuations in dilute AOT microemulsions with X < 20. Langmuir 1999, 15, 3718–3725.Google Scholar

  • [112]

    Chiesa M, Garg J, Kang YT, Chen G. Thermal conductivity and viscosity of water-in-oil nanoemulsions. Colloids Surf, A Physicochem. Eng. Asp. 2008, 326, 67–72.CrossrefGoogle Scholar

  • [113]

    Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer, 5th ed., Wiley, 2001, p. 944.Google Scholar

  • [114]

    Bradfiel WS. On effect of subcooling on wall superheat in pool boiling. J. Heat Transf. 1967, 89, 269.CrossrefGoogle Scholar

  • [115]

    Shepherd JE, Sturtevant B. Rapid evaporation at the superheat limit. J. Fluid Mech. 1982, 121, 379–402.CrossrefGoogle Scholar

  • [116]

    Park H-C, Byun K-T, Kwak H-Y. Explosive boiling of liquid droplets at their superheat limits. Chem. Eng. Sci. 2005, 60, 1809–1821.CrossrefGoogle Scholar

  • [117]

    Zhaoyi D, Xiulan H, Dengying L. Experimental study on the explosive boiling in saturated liquid nitrogen. Progr. Nat. Sci. 2005, 15, 61–65.CrossrefGoogle Scholar

  • [118]

    Kandlikar SG, Shoji M, Dhir VK. Handbook of Phase Change: Boiling and Condensation, Taylor&Francis, 1999.Google Scholar

  • [119]

    Forster HK, Zuber N. Dynamics of vapor bubbles and boiling heat transfer. Aiche J. 1955, 1, 531–535.CrossrefGoogle Scholar

  • [120]

    Zuber N. On the correlation of data in nucleate pool boiling from a horizontal surface. Aiche J. 1957, 3, S9–S11.CrossrefGoogle Scholar

  • [121]

    Zuber N, Fried E. 2-Phase flow and boiling heat transfer to cryogenic liquids. ARS J. 1962, 32, 1332–1341.Google Scholar

  • [122]

    Mudawar I, Bowers MB. Ultra-high critical heat flux (CHF) for subcooled water flow boiling – I: CHF data and parametric effects for small diameter tubes. Int. J. Heat Mass Transf. 1999, 42, 1405–1428.CrossrefGoogle Scholar

  • [123]

    3M, Fluorinert™ Electronic Liquid FC-72 Product Information.Google Scholar

  • [124]

    Chu B. Laser Light Scattering, New York: Academic Press, 1974.Google Scholar

  • [125]

    Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 2006, 88, 093116–093119.CrossrefGoogle Scholar

  • [126]

    Watson ES, O’Neill MJ. U.S. Patent 3,263,484, 1962.Google Scholar

  • [127]

    Taylor GI. The formation of emulsions in definable fields of flow, In Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1934/10/01, 146, 501–523.Google Scholar

  • [128]

    Nagano K, Ogawa K, Mochida T, Hayashi K, Ogoshi H. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. Appl. Therm. Eng. 2004, 24, 221–232.CrossrefGoogle Scholar

  • [129]

    Vehkamäki H. Classical Nucleation Theory in Multicomponent Systems, 1st ed., New York: Springer, 2006.Google Scholar

About the article

Jiajun Xu

Jiajun Xu is a PhD candidate of Mechanical Engineering at the University of Maryland-College Park. His research is on developing novel thermal management solutions using nanoemulsion heat transfer fluids, and he has authored and coauthored nine journal papers, one book chapter, and several conference proceedings. He is a member of the ASME and ASHRAE.

Bao Yang

Dr. Bao Yang is an Associate Professor in the Department of Mechanical Engineering at the University of Maryland College Park. Dr. Yang received a PhD in Physics from the University of Science and Technology of China in 1998 and a PhD in Mechanical Engineering from the University of California Los Angeles in 2003. His research interests are in micro/nanoscale thermal transport, thermal fluids, solid state energy conversion, and MEMS fabrication. He currently is a member of the American Society of Mechanical Engineers (ASME), Materials Research Society (MRS), American Physical Society (APS), and International Thermoelectrics Society (ITS).


Corresponding author: Bao Yang, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA


Received: 2012-12-30

Accepted: 2013-03-25

Published Online: 2013-05-28

Published in Print: 2013-06-01


Citation Information: Nanotechnology Reviews, Volume 2, Issue 3, Pages 289–306, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2012-0041.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ting-Heng Hsu, Chieh-Hsuan Chung, Feng-Ju Chung, Chun-Che Chang, Ming-Chang Lu, and Yu-Lun Chueh
Nano Energy, 2018
[2]
Jiajun Xu, Boualem Hammouda, Fangyu Cao, and Bao Yang
Advances in Mechanical Engineering, 2015, Volume 7, Number 4, Page 168781401558126

Comments (0)

Please log in or register to comment.
Log in