[1]
Bean CP, Livingston JD. Superparamagnetism. J. Appl. Phys. 1959, 30, S120–S129.CrossrefGoogle Scholar
[2]
Bean CP, Jacobs IS. Magnetic granulometry and super-paramagnetism. J. Appl. Phys. 1956, 27, 1448–1452.CrossrefGoogle Scholar
[3]
Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.CrossrefGoogle Scholar
[4]
Liu C, Zou B, Rondinone AJ, Zhang ZJ. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 2000, 122, 6263–6267.CrossrefGoogle Scholar
[5]
Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.CrossrefPubMedGoogle Scholar
[6]
Ling MM, Wang KY, Chung T-S. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res. 2010, 49, 5869–5876.CrossrefGoogle Scholar
[7]
Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, 482–501.CrossrefPubMedGoogle Scholar
[8]
Vestal CR, Zhang ZJ. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett. 2003, 3, 1739–1743.CrossrefGoogle Scholar
[9]
Daalderop GHO, Kelly PJ, Schuurmans MFH. First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. Phys. Rev. B: Condens. Matter 1990, 41, 11919–11937.PubMedCrossrefGoogle Scholar
[10]
Sohn K, Kang SW, Ahn S, Woo M, Yang S-K. Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ. Sci. Technol. 2006, 40, 5514–5519.PubMedGoogle Scholar
[11]
Bunker CE, Karnes JJ. Low-temperature stability and high-temperature reactivity of iron-based core-shell nanoparticles. J. Am. Chem. Soc. 2004, 126, 10852–10853.CrossrefGoogle Scholar
[12]
Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 2010, 27, 264–271.PubMedGoogle Scholar
[13]
Choi K-H, Wang K-K, Shin EP, Oh S-L, Jung J-S, Kim H-K, Kim Y-R. Water-soluble magnetic nanoparticles functionalized with photosensitizer for photocatalytic application. J. Phys. Chem. C 2011, 115, 3212–3219.CrossrefGoogle Scholar
[14]
Han S, Yu T, Park J, Koo B, Joo J, Hyeon T, Hong S, Im J. Diameter-controlled synthesis of discrete and uniform-sized single-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded in zirconia nanoparticle arrays as catalysts. J. Phys. Chem. B 2004, 108, 8091–8095.CrossrefGoogle Scholar
[15]
Lu JQ, Moll N, Fu Q, Liu J. Iron nanoparticles derived from iron-complexed polymethylglutarimide to produce high-quality lithographically defined single-walled carbon nanotubes. Chem. Mater. 2005, 17, 2237–2240.CrossrefGoogle Scholar
[16]
Dahal N, Wright JT, Willey TM, Meulenberg RW, Chikan V. Preparation of iron and gold silicide nanodomains on silicon (111) by the reaction of gold, iron-gold core-shell, and alloy nanoparticles with triethylsilane. ACS Appl. Mater. Interfaces 2010, 2, 2238–2247.Google Scholar
[17]
Wang Q, Lee S, Choi H. Aging study on the structure of Fe0-nanoparticles: stabilization, characterization, and reactivity. J. Phys. Chem. C 2010, 114, 2027–2033.CrossrefGoogle Scholar
[18]
Huo C-F, Li Y-W, Wang J, Jiao H. Insight into CH4 formation in iron-catalyzed Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2009, 131, 14713–14721.CrossrefGoogle Scholar
[19]
Deng B, Campbell TJ, Burris DR. Hydrocarbon formation in metallic iron/water systems. Environ. Sci. Technol. 1997, 31, 1185–1190.CrossrefGoogle Scholar
[20]
Zhu Y, Ye Y, Zhang S, Leong ME, Tao F. Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis. Langmuir 2012, 28, 8275–8280.PubMedCrossrefGoogle Scholar
[21]
Shpaisman N, Margel S. Synthesis and characterization of air-stable iron nanocrystalline particles based on a single-step swelling process of uniform polystyrene template microspheres. Chem. Mater. 2006, 18, 396–402.CrossrefGoogle Scholar
[22]
Amara D, Margel S. Solventless thermal decomposition of ferrocene as a new approach for the synthesis of porous superparamagnetic and ferromagnetic composite microspheres of narrow size distribution. J. Mater. Chem. 2011, 21, 15764–15772.CrossrefGoogle Scholar
[23]
Amara D, Felner I, Nowik I, Margel S. Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloids Surf. A 2009, 339, 106–110.Google Scholar
[24]
Wang G, Harrison A. Preparation of iron particles coated with silica J. Colloid Interface Sci. 1999, 217, 203–207.Google Scholar
[25]
Dorathi PJ, Kandasamy P. Dechlorination of chlorophenols by zero valent iron impregnated silica. J. Environ. Sci. 2012, 24, 765–773.Google Scholar
[26]
Jay F, Gauthier V, Dubois S. Iron particles coated with alumina: synthesis by a mechanofusion process and study of the high-temperature oxidation resistance. J. Am. Ceram. Soc. 2006, 89, 3522–3528.CrossrefGoogle Scholar
[27]
Valde’s-Soli’s T, Rebolledo AF, Sevilla M, Valle-Vigo’n P, Bomati’-Miguel O, Fuertes AB, Tartaj P. Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem. Mater. 2009, 21, 1806–1814.Google Scholar
[28]
Kattel K, Park JY, Xu W, Kim HG, Lee EJ, Bony BA, Heo WC, Lee JJ, Jin S, Baeck JS, Chang Y, Kim TJ, Bae JE, Chae KS, Lee GH. A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Inter. 2011, 3, 3325–3334.CrossrefGoogle Scholar
[29]
Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer 2011, 47, 1873–1882.CrossrefPubMedGoogle Scholar
[30]
Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 2008, 5, 316–327.CrossrefPubMedGoogle Scholar
[31]
Liu C, Zhang ZJ. Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater. 2001, 13, 2092–2096.CrossrefGoogle Scholar
[32]
Rondinone AJ, Liu C, Zhang ZJ. Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. J. Phys. Chem. B 2001, 105, 7967–7971.CrossrefGoogle Scholar
[33]
Vestal CR, Zhang ZJ. Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J. Am. Chem. Soc. 2003, 125, 9828–9833.CrossrefGoogle Scholar
[34]
Smith TW, Wychick D. Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl. J. Phys. Chem. 1980, 84, 1621–1629.CrossrefGoogle Scholar
[35]
Suslick KS, Hyeon T, Fang M. Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem. Mater. 1996, 8, 2172–2179.CrossrefGoogle Scholar
[36]
Shafi KVPM, Ulman A, Yan X, Yang NL, Estournes C, White H, Rafailovich M. Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 2001, 17, 5093–5097.CrossrefGoogle Scholar
[37]
Wizel S, Margel S, Gedanken A. The preparation of a polystyrene-iron composite by using ultrasound radiation. Polym. Int. 2000, 49, 445–448.CrossrefGoogle Scholar
[38]
Lai Ji, Shafi KVPM, Ulman A, Loos K, Lee Y, Vogt T, Lee WL, Ong NP. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants. J. Phys. Chem. B 2005, 109, 15–18.CrossrefGoogle Scholar
[39]
Weisshaar DE, Kuwana T. Electrodeposition of metal microparticles in a polymer film on a glassy carbon electrode. J. Electroanal. Chem. 1984, 163, 395–399.CrossrefGoogle Scholar
[40]
Ye E, Liu B, Fan WY. Preparation of graphite-coated iron nanoparticles using pulsed laser decomposition of Fe3(CO)12 and PPh3 in hexane. Chem. Mater. 2007, 19, 3845–3849.Google Scholar
[41]
Sivakumar M, Gedanken A, Bhattacharya D, Brukental I, Yeshurun Y, Zhong W, Du YW, Felner I, Nowik I. Sonochemical synthesis of nanocrystalline rare earth orthoferrites using Fe(CO)5 precursor. Chem. Mater. 2004, 16, 3623–3632.CrossrefGoogle Scholar
[42]
Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater. 2004, 16, 2814–2818.CrossrefGoogle Scholar
[43]
Richard S, Robert S, Robert G. Iron Pentacarbonyl: its toxicity, detection, and potential for formation. Am. Ind. Hyg. Assoc. J. 1967, 28, 21–30.Google Scholar
[44]
Bamnolker H, Margel S. Dispersion polymerization of styrene in polar solvents: effect of reaction parameters on microsphere surface composition and surface properties, size and size distribution, and molecular weight. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 1857–1871.CrossrefGoogle Scholar
[45]
Schenck R. Gleichgewichtsuntersuchungen über die reduktions-, oxydations- und kohlungsvorgänge beim eisen. V. ZAAC 1927, 167, 315–328.CrossrefGoogle Scholar
[46]
Cullity BD. Introduction to Magnetic Materials, Addison-Wesely: Reading, MA, 1972.Google Scholar
[47]
Amara D, Margel S. Synthesis and characterization of superparamagnetic core-shell micrometre-sized particles of narrow size distribution by a swelling process. J. Mater. Chem. 2012, 22, 9268–9276.CrossrefGoogle Scholar
[48]
Han YC, Cha HG, Kim CW, Kim YH, Kang YS. Synthesis of highly magnetized iron nanoparticles by a solventless thermal decomposition method. J. Phys. Chem C 2007, 111, 6275–6280.Google Scholar
[49]
Amara D, Grinblat J, Margel S. Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J. Mater. Chem. 2012, 22, 2188–2195.CrossrefGoogle Scholar
[50]
Zhang Z, Zhao B, Hu L. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 1996, 121, 105–110.Google Scholar
[51]
Rivas BL, Pereira ED, Moreno-Villoslada I. Water-soluble polymer-metal ion interactions. Prog. Polym. Sci. 2003, 28, 173–208.CrossrefGoogle Scholar
[52]
Van der Put PJ. The Inorganic Chemistry of Materials: How to Make Things Out of Elements. Plenum: NY, 1998, pp 278.Google Scholar
[53]
Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 2176–2179.PubMedGoogle Scholar
[54]
Wuepper JL, Popov AI. Spectroscopic studies of alkali metal ions and ammonium ions in 2-pyrrolidones. J. Am. Chem. Soc. 1969, 91, 4352–4356.Google Scholar
[55]
Agnew NH. Transition metal complexes of poly(vinylpyridines). J. Polym. Sci.: Polym. Chem. Edit. 1976, 14, 2819–2830.CrossrefGoogle Scholar
[56]
Grady BP, O’Connell EM, Yang CZ, Cooper SL. Blends of metal acetates and polyurethanes containing pyridine groups II. SAXS and EXAFS studies. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 2357–2366.CrossrefGoogle Scholar
[57]
Kodama RH. Magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372.CrossrefGoogle Scholar
[58]
Futaba DN, Goto J, Yasuda S, Yamada T, Yumura M, Hata K. General rules governing the highly efficient growth of carbon nanotubes. Adv. Mater. 2009, 21, 4811–4815.CrossrefPubMedGoogle Scholar
[59]
Schnepp Z, Wimbush SC, Antonietti M, Giordano C. Synthesis of highly magnetic iron carbide nanoparticles via a biopolymer route. Chem. Mater. 2010, 22, 5340–5344.CrossrefGoogle Scholar
Comments (0)