Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year

IMPACT FACTOR 2016: 1.438
5-year IMPACT FACTOR: 1.892

CiteScore 2016: 1.64

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.514

See all formats and pricing
More options …
Volume 2, Issue 5 (Oct 2013)


Metal oxide and bimetallic nanoparticles in ionic liquids: synthesis and application in multiphase catalysis

Martin H.G. Prechtl / Paul S. Campbell
Published Online: 2013-07-23 | DOI: https://doi.org/10.1515/ntrev-2013-0019


Ionic liquids (ILs) are well established as solvents and stabilizing agents for the synthesis of metallic nanoparticles (NPs) in general. The physicochemical properties of ILs and the supramolecular organization in the liquid state are capable of directing the growth of transition metal NPs generated in situ and to subsequently protect and stabilize them. Until now, many different NPs have been successfully synthesized within these media; however, the synthesis of metal oxide and bimetallic alloy or core-shell NPs in ILs is still relatively rare. Herein, we summarize the current state-of-the-art of the synthetic methods for these materials and their application in the broad field of catalysis, including multiphase systems, hydrogenation, dehydrogenation, functionalization, as well as defunctionalization reactions.

Keywords: bimetallic; catalysis; ionic liquids; metal oxides; nanoparticles


  • [1]

    Schmid G. Nanoparticles from Theory to Application, Wiley-VCH: Weinheim, 2004.Google Scholar

  • [2]

    Bönnemann H, Nagabhushana KS. In Surface and Nanomolecular Catalysis, Richards RM, Ed., CRC Press: Boca Raton, 2006, pp. 63–94.Google Scholar

  • [3]

    Astruc D, Lu F, Aranzaes JR. Nanoparticles as recyclable catalysts: the Frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872.CrossrefGoogle Scholar

  • [4]

    Astruc D. In Nanoparticles and Catalysis, Astruc D, Ed., Wiley-VCH: Weinheim, 2007.Google Scholar

  • [5]

    Roucoux A, Schulz J, Patin H. Reduced transition metal colloids:? a novel family of reusable catalysts?. Chem. Rev. 2002, 102, 3757–3778.CrossrefGoogle Scholar

  • [6]

    Roucoux A, Nowicki A, Philippot K. In Nanoparticles and Catalysis, Astruc D, Ed., Wiley-VCH: Weinheim, 2007, pp. 349–390.Google Scholar

  • [7]

    Roucoux A, Philippot K. In Handbook of Homogeneous Hydrogenation, Vries JGd, Elsevier CJ, Eds., Wiley-VCH: Weinheim, 2007, pp. 217–256.Google Scholar

  • [8]

    Valden M, Lai X, Goodman DW. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.Google Scholar

  • [9]

    Bell AT. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.Google Scholar

  • [10]

    Bönnemann H, Nagabhushana KS. In Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size-Control, Corain B, Schmid G, Toshima N, Eds., Elsevier: Amsterdam, 2007, pp. 21–48.Google Scholar

  • [11]

    Chaudret B. Synthesis and surface reactivity of organometallic nanoparticles. Top. Organomet. Chem. 2005, 16, 233–259.Google Scholar

  • [12]

    Amiens C, Chaudret B. Organometallic synthesis of nanoparticles. Mod. Phys. Lett. B 2007, 21, 1133–1141.CrossrefGoogle Scholar

  • [13]

    Kessler MT, Gedig C, Sahler S, Wand P, Robke S, Prechtl MHG. Recyclable nanoscale copper(I) catalysts in ionic liquid media for selective decarboxylative C–C bond cleavage. Catal. Sci. Technol. 2013, 3, 992–1001.CrossrefGoogle Scholar

  • [14]

    Dupont J, Scholten JD. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev. 2010, 39, 1780–1804.CrossrefGoogle Scholar

  • [15]

    Scholten JD, Leal CB, Dupont J. Transition metal nanoparticle catalysis in ionic liquids. Acs Catal. 2012, 2, 184–200.CrossrefGoogle Scholar

  • [16]

    Wender H, Migowski P, Feil AF, de Oliveira LF, Prechtl MHG, Leal R, Machado G, Teixeira SR, Dupont J. On the formation of anisotropic gold nanoparticles by sputtering onto a nitrile functionalised ionic liquid. Phys. Chem. Chem. Phys. 2011, 13, 13552–13557.CrossrefGoogle Scholar

  • [17]

    Wender H, de Oliveira LF, Migowski P, Feil AF, Lissner E, Prechtl MHG, Teixeira SR, Dupont J. Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C 2010, 114, 11764–11768.CrossrefGoogle Scholar

  • [18]

    Richter K, Birkner A, Mudring AV. Stabilizer-free metal nanoparticles and metal–metal oxide nanocomposites with long-term stability prepared by physical vapor deposition into ionic liquids. Angew. Chem. Int. Ed. 2010, 49, 2431–2435.CrossrefGoogle Scholar

  • [19]

    Helgadottir IS, Arquillière PP, Bréa P, Santini CC, Haumesser PH, Richter K, Mudring AV, Aouine M. Synthesis of bimetallic nanoparticles in ionic liquids: Chemical routes vs physical vapor deposition. Microelectronic Eng. 2013, 107, 229–232.CrossrefGoogle Scholar

  • [20]

    Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingartner H. Why are ionic liquids liquid? a simple explanation based on lattice and solvation energies. J. Am. Chem. Soc. 2006, 128, 13427–13434.CrossrefGoogle Scholar

  • [21]

    Wasserscheid P, Welton T. Ionic Liquids in Synthesis, Wiley-VCH: Weinheim, 2007.Google Scholar

  • [22]

    Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084.CrossrefGoogle Scholar

  • [23]

    Welton T. Ionic liquids in catalysis. Coord. Chem. Rev. 2004, 248, 2459–2477.CrossrefGoogle Scholar

  • [24]

    Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576.Google Scholar

  • [25]

    Prechtl MHG, Scholten JD, Dupont J. Tuning the selectivity of ruthenium nanoscale catalysts with functionalised ionic liquids: hydrogenation of nitriles. J. Mol. Catal. A Chem. 2009, 313, 74–78.CrossrefGoogle Scholar

  • [26]

    Darwich W, Gedig C, Prechtl MHG, Santini CC. Dihydroxyl Imidazolium Ionic Liquids: Solvent, Ligand and Reducing Agent in Metallic Nanoparticles Synthesis. Proceedings of the 5th Congress of Ionic Liquids, 2013, p. 44.Google Scholar

  • [27]

    Prechtl MHG, Campbell PS, Scholten JD, Fraser GB, Machado G, Santini CC, Dupont J, Chauvin Y. Imidazolium ionic liquids as promoters and stabilising agents for the preparation of metal(0) nanoparticles by reduction and decomposition of organometallic complexes. Nanoscale 2010, 2, 2601–2606.Google Scholar

  • [28]

    Canongia Lopes JN, Padua AAH. Nanostructural organization in ionic liquids. J. Phys. Chem. B 2006, 110, 3330–3335.CrossrefGoogle Scholar

  • [29]

    Wang Y, Izvekov S, Yan T, Voth GA. Multiscale coarse-graining of ionic liquids. J. Phys. Chem. B 2006, 110, 3564–3575.CrossrefGoogle Scholar

  • [30]

    Gutel T, Santini CC, Philippot K, Padua A, Pelzer K, Chaudret B, Chauvin Y, Basset JM. Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situ generated ruthenium nanoparticles?. J. Mater. Chem. 2009, 19, 3624–3631.CrossrefGoogle Scholar

  • [31]

    Prechtl MHG, Scholten JD, Dupont J. Carbon-carbon cross coupling reactions in ionic liquids catalysed by palladium metal nanoparticles. Molecules 2010, 15, 3441–3461.CrossrefGoogle Scholar

  • [32]

    Rossi LM, Dupont J, Machado G, Fichtner PFP, Radtke C, Baumvol IJR, Teixeira SR. Ruthenium dioxide nanoparticles in ionic liquids: synthesis, characterization and catalytic properties in hydrogenation of olefins and arenes. J. Braz. Chem. Soc. 2004, 15, 904–910.Google Scholar

  • [33]

    Rossi LM, Machado G, Fichtner PFP, Teixeira SR, Dupont J. On the use of ruthenium dioxide in 1-n-butyl-3-methylimidazolium ionic liquids as catalyst precursor for hydrogenation reactions. Catal. Lett. 2004, 92, 149–155.CrossrefGoogle Scholar

  • [34]

    Miao SD, Liu ZM, Zhang ZF, Han BX, Miao ZJ, Ding KL, An GM. Ionic liquid-assisted immobilization of rh on attapulgite and its application in cyclohexene hydrogenation. J. Phys. Chem. C 2007, 111, 2185–2190.CrossrefGoogle Scholar

  • [35]

    Migowski P, Machado G, Texeira SR, Alves MCM, Morais J, Traverse A, Dupont J. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 4814–4821.CrossrefGoogle Scholar

  • [36]

    Dash P, Dehm NA, Scott RWJ. Bimetallic PdAu nanoparticles as hydrogenation catalysts in imidazolium ionic liquids. J. Mol. Catal. A Chem. 2008, 286, 114–119.Google Scholar

  • [37]

    Dash P, Scott RWJ. 1-Methylimidazole stabilization of gold nanoparticles in imidazolium ionic liquids. Chem. Commun. 2009, 812–814.CrossrefGoogle Scholar

  • [38]

    Dash P, Miller SM, Scott RWJ. Stabilizing nanoparticle catalysts in imidazolium-based ionic liquids: a comparative study. J. Mol. Catal. A Chem. 2010, 329, 86–95.Google Scholar

  • [39]

    Jiang T, Zhou YX, Liang SG, Liu HZ, Han BX. Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chem. 2009, 11, 1000–1006.CrossrefGoogle Scholar

  • [40]

    Hu BJ, Wu TB, Ding KL, Zhou XS, Jiang T, Han BX. Seeding growth of Pd/Au bimetallic nanoparticles on highly cross-linked polymer microspheres with ionic liquid and solvent-free hydrogenation. J. Phys. Chem. C 2010, 114, 3396–3400.CrossrefGoogle Scholar

  • [41]

    Corma A, Iborra S, Xamena F, Monton R, Calvino JJ, Prestipino C. Nanoparticles of Pd on hybrid polyoxometalate-ionic liquid material: synthesis, characterization, and catalytic activity for heck reaction. J. Phys. Chem. C 2010, 114, 8828–8836.CrossrefGoogle Scholar

  • [42]

    Snyder J, Fujita T, Chen MW, Erlebacher J. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904–907.CrossrefGoogle Scholar

  • [43]

    Lee JS, Lee T, Song HK, Cho J, Kim BS. Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries. Energy Environ. Sci. 2011, 4, 4148–4154.CrossrefGoogle Scholar

  • [44]

    Valizadeh H, Azimi AA. ZnO/MgO containing ZnO nanoparticles as a highly effective heterogeneous base catalyst for the synthesis of 4H-pyrans and coumarins in [bmim]BF4. J. Iran. Chem. Soc. 2011, 8, 123–130.CrossrefGoogle Scholar

  • [45]

    Andanson JM, Marx S, Baiker A. Selective hydrogenation of cyclohexenone on iron–ruthenium nano-particles suspended in ionic liquids and CO2-expanded ionic liquids. Catal. Sci. Technol. 2012, 2, 1403–1409.CrossrefGoogle Scholar

  • [46]

    Maclennan A, Banerjee A, Scott RWJ. Aerobic oxidation of a,ß-unsaturated alcohols using sequentially-grown AuPd nanoparticles in water and tetraalkylphosphonium ionic liquids. Catal. Today 2012, 207, 170–179.Google Scholar

  • [47]

    Safavi A, Momeni S, Tohidi M. Silver-palladium nanoalloys modified carbon ionic liquid electrode with enhanced electrocatalytic activity towards formaldehyde oxidation. Electroanalysis 2012, 24, 1981–1988.CrossrefGoogle Scholar

  • [48]

    Souza BS, Pinho DMM, Leopoldino EC, Suarez PAZ, Nome F. Selective partial biodiesel hydrogenation using highly active supported palladium nanoparticles in imidazolium-based ionic liquid. Appl. Catal. A Gen. 2012, 433, 109–114.Google Scholar

  • [49]

    Suzuki S, Suzuki T, Tomita Y, Hirano M, Okazaki K, Kuwabata S, Torimoto T. Compositional control of AuPt nanoparticles synthesized in ionic liquids by the sputter deposition technique. Crystengcomm 2012, 14, 4922–4926.CrossrefGoogle Scholar

  • [50]

    Xiao WJ, Sun ZY, Chen S, Zhang HY, Zhao YF, Huang CL, Liu ZM. Ionic liquid-stabilized graphene and its use in immobilizing a metal nanocatalyst. Rsc Adv. 2012, 2, 8189–8193.CrossrefGoogle Scholar

  • [51]

    Zhao HD, Yu CZ, You HJ, Yan SC, Guo Y, Ding BJ, Song XP. A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions. J. Mater. Chem. 2012, 22, 4780–4789.CrossrefGoogle Scholar

  • [52]

    Zhou FL, Izgorodin A, Hocking RK, Spiccia L, MacFarlane DR. Electrodeposited mnOx films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2012, 2, 1013–1021.CrossrefGoogle Scholar

  • [53]

    Safavi A, Kazemi H, Momeni S, Tohidi M, Khanipour MP. Facile electrocatalytic oxidation of ethanol using Ag/Pd nanoalloys modified carbon ionic liquid electrode. Int. J. Hydrogen Energy 2013, 38, 3380–3386.CrossrefGoogle Scholar

  • [54]

    Sharghi H, Ebrahimpourmoghaddam S, Memarzadeh R, Javadpour S. Tin oxide nanoparticles (NP-SnO2): preparation, characterization and their catalytic application in the Knoevenagel condensation. J. Iran. Chem. Soc. 2013, 10, 141–149.CrossrefGoogle Scholar

  • [55]

    Yuan X, Sun G, Asakura H, Tanaka T, Chen X, Yuan Y, Laurenczy G, Kou Y, Dyson PJ, Yan N. Development of palladium surface-enriched heteronuclear Au-Pd nanoparticle dehalogenation catalysts in an ionic liquid. Chem. Eur. J. 2013, 2013, 1227–1234.CrossrefGoogle Scholar

  • [56]

    Alias A, Hamzah N, Yarmo MA. Hydrogenolysis of glycerol to propanediols over nano-ru/c catalyst with ionic liquid addition. Adv. Mater. Res. Switz. 2011, 173, 49–54.Google Scholar

  • [57]

    Chen W, Chen SW. Iridium-platinum alloy nanoparticles: composition-dependent electrocatalytic activity for formic acid oxidation. J. Mater. Chem. 2011, 21, 9169–9178.CrossrefGoogle Scholar

  • [58]

    Xu JL, Zhang C, Wang XG, Ji H, Zhao CC, Wang Y, Zhang ZH. Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation. Green Chem. 2011, 13, 1914–1922.CrossrefGoogle Scholar

  • [59]

    Kumar CCSR, Vol. 2: Nanostructured Oxides, Wiley-VCH: Weinheim, 2009.Google Scholar

  • [60]

    Bilecka I, Niederberger M. New developments in the nonaqueous and/or non-hydrolytic sol–gel synthesis of inorganic nanoparticles. Electrochim. Acta 2010, 55, 7717–7725.CrossrefGoogle Scholar

  • [61]

    Djerdj I, Arcon D, Jaglicic Z, Niederberger M. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. J. Solid State Chem. 2008, 181, 1571–1581.Google Scholar

  • [62]

    Niederberger M, Garnweitner G. Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem. Eur. J. 2006, 12, 7282–7302.CrossrefGoogle Scholar

  • [63]

    Alammar T, Birkner A, Mudring A-V. Ultrasound-assisted synthesis of cuo nanorods in a neat room-temperature ionic liquid. Eur. J. Inorg. Chem. 2009, 2765–2768.CrossrefGoogle Scholar

  • [64]

    Alammar T, Birkner A, Shekhah O, Mudring A-V. Sonochemical preparation of TiO2 nanoparticles in the ionic liquid 1-(3-hydroxypropyl)-3-methylimidazolium-bis(trifluoromethylsulfonyl)amide. Mater. Chem. Phys. 2010, 120, 109–113.Google Scholar

  • [65]

    Alammar T, Mudring A-V. Facile preparation of Ag/ZnO nanoparticles via photoreduction. J. Mater. Sci. 2009, 44, 3218–3222.CrossrefGoogle Scholar

  • [66]

    Hou X, Zhou F, Sun Y, Liu W. Ultrasound-assisted synthesis of dentritic ZnO nanostructure in ionic liquid. Mater. Lett. 2007, 61, 1789–1792.CrossrefGoogle Scholar

  • [67]

    Alammar T, Mudring A-V. Sonochemical synthesis of 0D, 1D, and 2D zinc oxide nanostructures in ionic liquids and their photocatalytic activity. ChemSusChem 2011, 4, 1796–1804.Google Scholar

  • [68]

    Alammar T, Shekhah O, Wohlgemuth J, Mudring AV. Ultrasound-assisted synthesis of mesoporous ß-Ni(OH)2 and NiO nano-sheets using ionic liquids. J. Mater. Chem. 2012, 22, 18252–18260.CrossrefGoogle Scholar

  • [69]

    Wang W-W, Zhu Y-J. Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg. Chem. Commun. 2004, 7, 1003–1005.CrossrefGoogle Scholar

  • [70]

    Li KF, Luo H, Ying TK. One-step, solid-state reaction to ZnO nanoparticles in the presence of ionic liquid. Mater. Sci. Semicond. Proc. 2011, 14, 184–187.CrossrefGoogle Scholar

  • [71]

    Zhu H, Huang J-F, Pan Z, Dai S. Ionothermal synthesis of hierarchical zno nanostructures from ionic-liquid precursors. Chem. Mater. 2006, 18, 4473–4477.CrossrefGoogle Scholar

  • [72]

    Avellaneda RS, Ivanova S, Sanz O, Romero-Sarria F, Centeno MA, Odriozola JA. Ionic liquid templated TiO2 nanoparticles as a support in gold environmental catalysis. Appl. Catal. B Environ. 2009, 93, 140–148.CrossrefGoogle Scholar

  • [73]

    Jacob DS, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chem. Mater. 2006, 18, 3162–3168.CrossrefGoogle Scholar

  • [74]

    Lee CM, Jeong HJ, Lim ST, Sohn MH, Kim DW. Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids. Acs Appl. Mater. Interf. 2010, 2, 756–759.CrossrefGoogle Scholar

  • [75]

    Zhao JB, Wu LL, Zou K. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid. Mater. Res. Bull. 2011, 46, 2427–2432.CrossrefGoogle Scholar

  • [76]

    Kandjani AE, Tabriz MF, Pourabbas B. Sonochemical synthesis of ZnO nanoparticles: The effect of temperature and sonication power. Mater. Res. Bull. 2008, 43, 645–654.CrossrefGoogle Scholar

  • [77]

    Wei YL, Chang PC. Characteristics of nano zinc oxide synthesized under ultrasonic condition. J. Phys. Chem. Solids 2008, 69, 688–692.CrossrefGoogle Scholar

  • [78]

    Campbell PS, Lorbeer C, Cybinska J, Mudring A-V. Adv. Funct. Mater. 2013, 23, 2924–2931.Google Scholar

  • [79]

    Lorbeer C, Cybinska J, Mudring A-V. Facile preparation of quantum cutting GdF3: Eu3+ nanoparticles from ionic liquids. Chem. Commun. 2010, 46, 571–573.CrossrefGoogle Scholar

  • [80]

    Campbell PS, Prechtl MHG, Santini CC, Haumesser P-H. Ruthenium nanoparticles in ionic liquids – a saga. Curr. Org. Chem. 2013, 17, 414–429.CrossrefGoogle Scholar

  • [81]

    Murray JL, Massalski TB, Bennett LH, Baker H. Binary Alloy Phase Diagrams, Vol. I and II, ASM International: Cleveland, OH, 1986.Google Scholar

  • [82]

    Kramer J, Redel E, Thomann R, Janiak C. Use of ionic liquids for the synthesis of iron, ruthenium, and osmium nanoparticles from their metal carbonyl precursors. Organometallics 2008, 27, 1976–1978.CrossrefGoogle Scholar

  • [83]

    Redel E, Thomann R, Janiak C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors. Chem. Commun. 2008, 1789–1791.CrossrefGoogle Scholar

  • [84]

    Vollmer C, Janiak C. Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord. Chem. Rev. 2011, 255, 2039–2057.CrossrefGoogle Scholar

  • [85]

    Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal–carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid–liquid hydrogenation nanocatalysts for cyclohexene. Chem. Eur. J. 2010, 16, 3849–3858, S3849/3841–S3849/3834.CrossrefGoogle Scholar

  • [86]

    Du JQ, Zhang Y, Tian T, Yan SC, Wang HT. Microwave irradiation assisted rapid synthesis of Fe–Ru bimetallic nanoparticles and their catalytic properties in water-gas shift reaction. Mater. Res. Bull. 2009, 44, 1347–1351.CrossrefGoogle Scholar

  • [87]

    Arquilliere PP, Santini CC, Haumesser PH, Aouine M. Synthesis of copper and copper-ruthenium nanoparticles in ionic liquids for the metallization of advanced interconnect structures. ECS Trans. 2011, 35, 11–16.Google Scholar

  • [88]

    Helgadottir IS, Arquillière PP, Campbell PS, Santini CC, Haumesser PH. Novel chemical route to size-controlled Ta(0) and Ru-Ta Nanoparticles in ionic liquids. MRS Online Proc. Library 2012, 1473.Google Scholar

  • [89]

    Shah A, Latif-ur-Rahman, Qureshi R, Zia-ur-Rehman. Synthesis, characterization and applications of bimetallic (Au-Ag, Au-Pt, Au-Ru) alloy nanoparticles. Rev. Adv. Mater. Sci. 2012, 30, 133–149.Google Scholar

  • [90]

    Venkatesan R, Prechtl MHG, Scholten JD, Pezzi RP, Machado G, Dupont J. Palladium nanoparticle catalysts in ionic liquids: synthesis, characterisation and selective partial hydrogenation of alkynes to Z-alkenes. J. Mater. Chem. 2011, 21, 3030–3036.CrossrefGoogle Scholar

  • [91]

    Okazaki K-i, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T. Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem. Commun. 2008, 0, 69–693.Google Scholar

  • [92]

    Suzuki T, Suzuki S, Tomita Y, Okazaki K-i, Shibayama T, Kuwabata S, Torimoto T. Fabrication of transition metal oxide nanoparticles highly dispersed in ionic liquids by sputter deposition. Chem. Lett. 2010, 39, 1072–1074.CrossrefGoogle Scholar

  • [93]

    Richter K, Birkner A, Mudring A-V. Stability and growth behavior of transition metal nanoparticles in ionic liquids prepared by thermal evaporation: how stable are they really?. Phys. Chem. Chem. Phys. 2011, 13, 7136–7141.CrossrefGoogle Scholar

  • [94]

    von Prondzinski N, Cybinska J, Mudring A-V. Easy access to ultra long-time stable, luminescent europium(II) fluoride nanoparticles in ionic liquids. Chem. Commun. 2010, 46, 4393–4395.CrossrefGoogle Scholar

  • [95]

    Richter R, Campbell PS, Baecker T, Schimitzek A, Yaprak D, Mudring AV. Phys. Status Solidi B 2013, 250, 1152–1164.Google Scholar

  • [96]

    Banerjee A, Theron R, Scott RWJ. Highly Stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis. ChemSusChem 2012, 5, 109–116.CrossrefGoogle Scholar

About the article

Martin H.G. Prechtl

Martin H.G. Prechtl studied chemistry and food chemistry (1999–2004) at the University of Wuppertal (Germany) and at the University of São Paulo (Brazil). He performed research in homogeneous catalysis at the Max Planck Institute for Coal Research (Germany) and obtained his PhD from RWTH Aachen in 2007 under the supervision of Walter Leitner and David Milstein (Weizmann Institute, Israel). As Feodor Lynen fellow of the Alexander von Humboldt Foundation, he performed research about “nanocatalysis in ionic liquids” with Jairton Dupont at the Federal University of Rio Grande do Sul (UFRGS) in Porto Alegre (Brazil) and with Thomas Braun and Erhard Kemnitz at the Humboldt University Berlin (Germany) from 2007 to 2010 in the field of nanoscale catalysts in multiphase systems. He received the Scientist Returnee Award 2009 (MIWF-NRW) and accepted a call of the University of Cologne as an independent group leader in 2010. He coauthored 30 articles and book chapters and edited one special issue about nanocatalysis.

Paul S. Campbell

Paul S. Campbell graduated with a Master’s degree in Chemistry (MChem) from Durham University, UK, in 2007. He then obtained his PhD in 2010 at the Université Claude Bernard Lyon 1, France, under the guidance of Dr. C. Santini and Nobel Laureate Yves Chauvin. There he investigated ILs as media for the separation of zirconium and hafnium as well as for metal NP synthesis and in situ catalysis. Since 2011, he has been an Alexander von Humboldt research fellow with Prof. A.-V. Mudring at the Ruhr-Universität Bochum, Germany, where his research interests include the use of ILs as a novel means to obtain advanced luminescent materials. He currently holds four patents and has coauthored 15 articles covering a broad range of aspects in IL chemistry.

Corresponding author: Martin H.G. Prechtl, Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, 50939 Köln, Germany

Received: 2013-04-11

Accepted: 2013-06-05

Published Online: 2013-07-23

Published in Print: 2013-10-01

Citation Information: Nanotechnology Reviews, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2013-0019.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Trung Dang-Bao, Daniel Pla, Isabelle Favier, and Montserrat Gómez
Catalysts, 2017, Volume 7, Number 7, Page 207
Hannelore Konnerth and Martin H. G. Prechtl
Green Chem., 2017, Volume 19, Number 12, Page 2762
Duncan W. Bruce, Christopher P. Cabry, José N. Canongia Lopes, Matthew L. Costen, Lucía D’Andrea, Isabelle Grillo, Brooks C. Marshall, Kenneth G. McKendrick, Timothy K. Minton, Simon M. Purcell, Sarah Rogers, John M. Slattery, Karina Shimizu, Eric Smoll, and María A. Tesa-Serrate
The Journal of Physical Chemistry B, 2017, Volume 121, Number 24, Page 6002
Matthias Groh, Alexander Wolff, Matthias Grasser, and Michael Ruck
International Journal of Molecular Sciences, 2016, Volume 17, Number 9, Page 1452
Taimur Athar, Sandeep Kumar Vishwakarma, and Aleem Ahmed Khan
BioNanoScience, 2016, Volume 6, Number 2, Page 121
Martin Scott, Peter J. Deuss, Johannes G. de Vries, Martin H. G. Prechtl, and Katalin Barta
Catal. Sci. Technol., 2016, Volume 6, Number 6, Page 1882
Hannelore Konnerth and Martin H. G. Prechtl
Chem. Commun., 2016, Volume 52, Number 58, Page 9129
Dagoberto O. Silva, Leandro Luza, Aitor Gual, Daniel L. Baptista, Fabiano Bernardi, Maximiliano J. M. Zapata, Jonder Morais, and Jairton Dupont
Nanoscale, 2014, Volume 6, Number 15, Page 9085
Abhinandan Banerjee, Robin Theron, and Robert W.J. Scott
Journal of Molecular Catalysis A: Chemical, 2014, Volume 393, Page 105

Comments (0)

Please log in or register to comment.
Log in