Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Challa, S.S.R. Kumar

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year

IMPACT FACTOR 2017: 1.904
5-year IMPACT FACTOR: 1.945

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.544
Source Normalized Impact per Paper (SNIP) 2017: 0.528

See all formats and pricing
More options …
Volume 3, Issue 2


Plasmonic metamaterials

Kan Yao
  • Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yongmin Liu
  • Corresponding author
  • Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
  • Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-10 | DOI: https://doi.org/10.1515/ntrev-2012-0071


Plasmonics and metamaterials have attracted considerable attention over the past decade, owing to the revolutionary impacts that they bring to both the fundamental physics and practical applications in multiple disciplines. Although the two fields initially advanced along their individual trajectories in parallel, they started to interfere with each other when metamaterials reached the optical regime. The dynamic interplay between plasmonics and metamaterials has generated a number of innovative concepts and approaches, which are impossible with either area alone. This review presents the fundamentals, recent advances, and future perspectives in the emerging field of plasmonic metamaterials, aiming to open up new exciting opportunities for nanoscience and nanotechnology.

Keywords: metamaterials; nanomaterials; nano-optics; plasmonics


  • [1]

    Smith D, Pendry J, Wiltshire M. Metamaterials and negative refractive index. Science 2004, 305, 788–792.CrossrefGoogle Scholar

  • [2]

    Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507.CrossrefGoogle Scholar

  • [3]

    Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530.Google Scholar

  • [4]

    Cai W, Shalaev VM. Optical Metamaterials: Fundamentals and Applications, Springer: New York, 2010.Google Scholar

  • [5]

    Smith D, Schultz S, Markoš P, Soukoulis C. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104.CrossrefGoogle Scholar

  • [6]

    Pendry JB, Holden A, Stewart W, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776.CrossrefGoogle Scholar

  • [7]

    Pendry JB, Holden A, Robbins D, Stewart W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084.CrossrefGoogle Scholar

  • [8]

    Smith DR, Kroll N. Negative refractive index in left-handed materials. Phys. Rev. Lett. 2000, 85, 2933–2936.CrossrefGoogle Scholar

  • [9]

    Choi M, Lee SH, Kim Y, Kang SB, Shin J, Kwak MH, Kang K-Y, Lee Y-H, Park N, Min B. A terahertz metamaterial with unnaturally high refractive index. Nature 2011, 470, 369–373.Google Scholar

  • [10]

    Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann GV, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515.CrossrefGoogle Scholar

  • [11]

    Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006, 312, 1780–1782.CrossrefGoogle Scholar

  • [12]

    Leonhardt U. Optical conformal mapping. Science 2006, 312, 1777–1780.CrossrefGoogle Scholar

  • [13]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G. Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 2009, 51, 3–33.CrossrefGoogle Scholar

  • [14]

    Chen H, Chan C, Sheng P. Transformation optics and metamaterials. Nat. Mater. 2010, 9, 387–396.CrossrefGoogle Scholar

  • [15]

    Liu Y, Zhang X. Recent advances in transformation optics. Nanoscale 2012, 4, 5277–5292.CrossrefGoogle Scholar

  • [16]

    Soukoulis CM. Negative refractive index at optical wavelengths. Science 2007, 315, 47–49.CrossrefGoogle Scholar

  • [17]

    Klein M, Enkrich C, Wegener M, Soukoulis C, Linden S. Single-slit split-ring resonators at optical frequencies: limits of size scaling. Opt. Lett. 2006, 31, 1259–1261.CrossrefGoogle Scholar

  • [18]

    Zhou J, Koschny Th, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 2005, 95, 223902.CrossrefGoogle Scholar

  • [19]

    Tretyakov S. On geometrical scaling of split-ring and double-bar resonators at optical frequencies. Metamaterials 2007, 1, 40–43.CrossrefGoogle Scholar

  • [20]

    Raether, H. Surface Plasmons, Springer-Verlag: Berlin, 1988.Google Scholar

  • [21]

    Maier SA. Plasmonics: Fundamentals and Applications, Springer Science+Business Media: New York, 2007.Google Scholar

  • [22]

    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.CrossrefGoogle Scholar

  • [23]

    Zhang X, Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 2008, 7, 435–441.CrossrefGoogle Scholar

  • [24]

    Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.CrossrefGoogle Scholar

  • [25]

    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X. Plasmonic nanolithography. Nano Lett. 2004, 4, 1085–1088.CrossrefGoogle Scholar

  • [26]

    Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91.CrossrefGoogle Scholar

  • [27]

    Chaturvedi P, Wu W, Logeeswaran VJ, Yu Z, Islam S, Wang SY, Williams RS, Fang NX. A smooth optical superlens. Appl. Phys. Lett. 2010, 96, 043102.CrossrefGoogle Scholar

  • [28]

    Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.CrossrefGoogle Scholar

  • [29]

    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667.CrossrefGoogle Scholar

  • [30]

    Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250.CrossrefGoogle Scholar

  • [31]

    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.CrossrefGoogle Scholar

  • [32]

    Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Physics-Uspekhi 1968, 10, 509–514.CrossrefGoogle Scholar

  • [33]

    Shelby R, Smith D, Schultz S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79.CrossrefGoogle Scholar

  • [34]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379.Google Scholar

  • [35]

    Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 2005, 95, 137404.CrossrefGoogle Scholar

  • [36]

    Xiao S, Drachev VP, Kildishev AV, Ni X, Chettiar UK, Yuan H-K, Shalaev VM. Loss-free and active optical negative-index metamaterials. Nature 2010, 466, 735–738.CrossrefGoogle Scholar

  • [37]

    Shin H, Fan S. All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys. Rev. Lett. 2006, 96, 073907.CrossrefGoogle Scholar

  • [38]

    Lezec HJ, Dionne JA, Atwater HA. Negative refraction at visible frequencies. Science 2007, 316, 430–432.CrossrefGoogle Scholar

  • [39]

    Verhagen E, de Waele R, Kuipers L, Polman A. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides. Phys. Rev. Lett. 2010, 105, 223901.CrossrefGoogle Scholar

  • [40]

    Burgos SP, de Waele R, Polman A, Atwater HA. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat. Mater. 2010, 9, 407–412.CrossrefGoogle Scholar

  • [41]

    Xu T, Agrawal A, Abashin M, Chau KJ, Lezec HJ. All-angle negative refraction and active flat lensing of ultraviolet light. Nature 2013, 497, 470–474.CrossrefGoogle Scholar

  • [42]

    Atre AC, García-Etxarri A, Alaeian H, Dionne JA. A broadband negative index metamaterial at optical frequencies. Adv. Opt. Mater. 2013, 1, 327–333.CrossrefGoogle Scholar

  • [43]

    Vesseur EJR, Coenen T, Caglayan H, Engheta N, Polman A. Experimental verification of n=0 structures for visible light. Phys. Rev. Lett. 2013, 110, 013902.CrossrefGoogle Scholar

  • [44]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X. Optical negative refraction in bulk metamaterials of nanowires. Science 2008, 321, 930–930.CrossrefGoogle Scholar

  • [45]

    Liu Y, Bartal G, Zhang X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt. Exp. 2008, 16, 15439–15448.CrossrefGoogle Scholar

  • [46]

    Fang A, Koschny T, Soukoulis CM. Optical anisotropic metamaterials: negative refraction and focusing. Phys. Rev. B 2009, 79, 245127.CrossrefGoogle Scholar

  • [47]

    Wheeler MS, Aitchison JS, Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys. Rev. B 2005, 72, 193103.CrossrefGoogle Scholar

  • [48]

    Vynck K, Felbacq D, Centeno E, Cabuz AI, Cassagne D, Guizal B. All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 2009, 102, 133901.CrossrefGoogle Scholar

  • [49]

    Schuller JA, Zia R, Taubner T, Brongersma ML. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 2007, 99, 107401.CrossrefGoogle Scholar

  • [50]

    Simovski C, Tretyakov S. Model of isotropic resonant magnetism in the visible range based on core-shell clusters. Phys. Rev. B 2009, 79, 045111.CrossrefGoogle Scholar

  • [51]

    Paniagua-Domínguez R, López-Tejeira F, Marqués R, Sánchez-Gil JA. Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials. New J. Phys. 2011, 13, 123017.CrossrefGoogle Scholar

  • [52]

    Paniagua-Domínguez R, Abujetas D, Sánchez-Gil J. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires. Sci. Rep. 2013, 3, 1507.Google Scholar

  • [53]

    Muhlig S, Cunningham A, Scheeler S, Pacholski C, Bürgi T, Rockstuh C, Lederer F. Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range. ACS Nano 2011, 5, 6586–6592.CrossrefGoogle Scholar

  • [54]

    Čerenkov P. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 1937, 52, 378–379.CrossrefGoogle Scholar

  • [55]

    Chen H, Chen M. Flipping photons backward: reversed Cherenkov radiation. Mater. Today 2011, 14, 34–41.CrossrefGoogle Scholar

  • [56]

    Zhang S, Zhang X. Flipping a photonic shock wave. Physics 2009, 2, 91.CrossrefGoogle Scholar

  • [57]

    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B-I, Kong JA, Chen M. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 2009, 103, 194801.CrossrefGoogle Scholar

  • [58]

    Grbic A, Eleftheriades GV. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys. 2002, 92, 5930–5935.CrossrefGoogle Scholar

  • [59]

    Antipov S, Spentzouris L, Gai W, Conde M, Franchini F, Konecny R, Liu W, Power JG, Yusof Z, Jing C. Observation of wakefield generation in left-handed band of metamaterial-loaded waveguide. J. Appl. Phys. 2008, 104, 014901.CrossrefGoogle Scholar

  • [60]

    Seddon N, Bearpark T. Observation of the inverse Doppler effect. Science 2003, 302, 1537–1540.CrossrefGoogle Scholar

  • [61]

    Chen J, Wang Y, Jia B, Geng T, Li X, Feng L, Qian W, Liang B, Zhang X, Gu M, Zhuang S. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nat. Photonics 2011, 5, 239–245.CrossrefGoogle Scholar

  • [62]

    Kemp BA, Kong JA, Grzegorczyk TM. Reversal of wave momentum in isotropic left-handed media. Phys. Rev. A 2007, 75, 053810.CrossrefGoogle Scholar

  • [63]

    Minkowski H. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1908, 1908, 53–111.Google Scholar

  • [64]

    Abraham M. Zur elektrodynamik bewegter körper. Rend. Circ. Mat. Palermo (1884–1940) 1909, 28, 1–28.Google Scholar

  • [65]

    Leonhardt U. Momentum in an uncertain light. Nature 2006, 444, 823–824.Google Scholar

  • [66]

    Veselago VG. Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium. Phys.-Usp. 2009, 52, 649–654.CrossrefGoogle Scholar

  • [67]

    Chau KJ, Lezec HJ. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab. Opt. Exp. 2012, 20, 10138–10162.CrossrefGoogle Scholar

  • [68]

    Mansuripur M, Zakharian AR. Radiation pressure and photon momentum in negative-index media. Proc. SPIE 2012, 8455, 845511.Google Scholar

  • [69]

    Nemirovsky J, Rechtsman MC, Segev M. Negative radiation pressure and negative effective refractive index via dielectric birefringence. Opt. Exp. 2012, 20, 8907–8914.CrossrefGoogle Scholar

  • [70]

    Chen J, Ng J, Lin Z, Chan CT. Optical pulling force. Nat. Photonics 2011, 5, 531–534.CrossrefGoogle Scholar

  • [71]

    Sukhov S, Dogariu A. Negative nonconservative forces: optical “tractor beams” for arbitrary objects. Phys. Rev. Lett. 2011, 107, 203602.CrossrefGoogle Scholar

  • [72]

    Kajorndejnukul V, Ding W, Sukhov S, Qiu C-W, Dogariu A. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photonics 2013, 7, 787–790.CrossrefGoogle Scholar

  • [73]

    Dogariu A, Sukhov S, Sáenz J. Optically induced ‘negative forces’. Nat. Photonics 2012, 7, 24–27.CrossrefGoogle Scholar

  • [74]

    Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011, 334, 333–337.CrossrefGoogle Scholar

  • [75]

    Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012, 335, 427.CrossrefGoogle Scholar

  • [76]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 2012, 11, 426–431.CrossrefGoogle Scholar

  • [77]

    Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013, 339, 6125.Google Scholar

  • [78]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science 2013, 339, 1405–1407.CrossrefGoogle Scholar

  • [79]

    Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan X-C, Capasso F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013, 340, 331–334.CrossrefGoogle Scholar

  • [80]

    Rodríguez-Fortuño FJ, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz GA, Zayats AV. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 2013, 340, 328–330.CrossrefGoogle Scholar

  • [81]

    Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2013, 2, e70.Google Scholar

  • [82]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E. Spin-optical metamaterial route to spin-controlled photonics. Science 2013, 340, 724–726.CrossrefGoogle Scholar

  • [83]

    Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AT, Dalvit DAR, Chen HT. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304–1307.CrossrefGoogle Scholar

  • [84]

    Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C-H, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 2012, 3, 1198.CrossrefGoogle Scholar

  • [85]

    Moreau A, Ciracì C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012, 492, 86–89.CrossrefGoogle Scholar

  • [86]

    Munk BA. Frequency Selective Surfaces: Theory and Design, John Wiley & Sons: New York, 2000.Google Scholar

  • [87]

    Ryan CG, Mil R, Chaharmir MR, Shaker J, Bray JR. A wideband transmitarray using dual-resonant double square rings. IEEE Trans. Antennas Propag. 2010, 58, 1486–1493.CrossrefGoogle Scholar

  • [88]

    Sazegar M, Zheng Y, Maune H, Nikfalazar M, Jakoby, R. Beam steering transmitarray using a tunable frequency selective surface with integrated ferroelectric varactors. IEEE Trans. Antennas Propag. 2012, 60, 5690–5699.CrossrefGoogle Scholar

  • [89]

    Pozar DM, Targonski SD, Syrigos H. Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 1997, 45, 287–296.CrossrefGoogle Scholar

  • [90]

    Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 1551–1558.CrossrefGoogle Scholar

  • [91]

    Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199.CrossrefGoogle Scholar

  • [92]

    Aieta F, Genevet P, Yu N, Kats MA, Gaburro Z, Capasso F. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 2012, 12, 1702–1706.CrossrefGoogle Scholar

  • [93]

    Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936.CrossrefGoogle Scholar

  • [94]

    Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012, 12, 5750–5755.CrossrefGoogle Scholar

  • [95]

    Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012, 12, 6328–6333.CrossrefGoogle Scholar

  • [96]

    Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 2013, 13, 829–834.CrossrefGoogle Scholar

  • [97]

    Walther B, Helgert C, Rockstuh C, Setzpfandt F, Eilenberger F, Kley E-B, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Adv. Mater. 2012, 24, 6300–6304.CrossrefGoogle Scholar

  • [98]

    Kats MA, Genevet P, Aoust G, Yu N, Blanchard R, Aieta F, Gaburro Z, Capasso F. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl. Acad. Sci. USA 2012, 109, 12364–12368.CrossrefGoogle Scholar

  • [99]

    Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep. 2013, 3, 2155.Google Scholar

  • [100]

    Lavery MPJ, Speirits FC, Barnett SM, Padgett MJ. Detection of a spinning object using light’s orbital angular momentum. Science 2013, 341, 537–540.CrossrefGoogle Scholar

  • [101]

    Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt. Commun. 2002, 207, 169–175.CrossrefGoogle Scholar

  • [102]

    Grier DG. A revolution in optical manipulation. Nature 2003, 424, 810–816.CrossrefGoogle Scholar

  • [103]

    Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Exp. 2004, 12, 5448–5456.CrossrefGoogle Scholar

  • [104]

    Barreiro JT, Wei T-C, Kwiat PG. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 2008, 4, 282–286.CrossrefGoogle Scholar

  • [105]

    Allen L, Beijersbergen M, Spreeuw R, Woerdman J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189.CrossrefGoogle Scholar

  • [106]

    Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 2006, 96, 163905.CrossrefGoogle Scholar

  • [107]

    Bliokh KY, Niv A, Kleiner V, Hasman E. Geometrodynamics of spinning light. Nat. Photonics 2008, 2, 748–753.CrossrefGoogle Scholar

  • [108]

    Wunderlich J, Kaestner B, Sinova J, Jungwirth T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 2005, 94, 047204.CrossrefGoogle Scholar

  • [109]

    Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements. Science 2008, 319, 787–790.CrossrefGoogle Scholar

  • [110]

    Leyder C, Romanelli M, Karr JPh, Giacobino E, Liew TCH, Glazov MM, Kavokin AV, Malpuech G, Bramati A. Observation of the optical spin Hall effect. Nat. Phys. 2007, 3, 628–631.CrossrefGoogle Scholar

  • [111]

    Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 2012, 3, 1205.Google Scholar

  • [112]

    Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 2013, 110, 197401.CrossrefGoogle Scholar

  • [113]

    Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 2013, 110, 203903.CrossrefGoogle Scholar

  • [114]

    Liu Y, Zentgraf T, Bartal G, Zhang, X. Transformational plasmon optics. Nano Lett. 2010, 10, 1991–1997.CrossrefGoogle Scholar

  • [115]

    Huidobro PA, Nesterov ML, Martín-Moreno L, García-Vidal FJ. Transformation optics for plasmonics. Nano Lett. 2010, 10, 1985–1990.CrossrefGoogle Scholar

  • [116]

    Aubry A, Lei DY, Fernández-Domínguez AI, Sonnefraud Y, Maier SA, Pendry JB. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 2010, 10, 2574–2579.CrossrefGoogle Scholar

  • [117]

    Liu Y, Palomba S, Park Y, Zentgraf T, Yin X, Zhang X. Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett. 2012, 12, 4853–4858.CrossrefGoogle Scholar

  • [118]

    Liu Y, Zhang X. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett. 2013, 103, 141101.CrossrefGoogle Scholar

  • [119]

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossrefGoogle Scholar

  • [120]

    Novoselov K, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossrefGoogle Scholar

  • [121]

    Grigorenko A, Polini M, Novoselov K. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758.CrossrefGoogle Scholar

  • [122]

    Rana F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 2008, 7, 91–99.CrossrefGoogle Scholar

  • [123]

    Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80, 245435.CrossrefGoogle Scholar

  • [124]

    Koppens FH, Chang DE, Garcia de Abajo FJ. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 2011, 11, 3370–3377.CrossrefGoogle Scholar

  • [125]

    Vakil A, Engheta N. Transformation optics using graphene. Science 2011, 332, 1291–1294.CrossrefGoogle Scholar

  • [126]

    Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694.CrossrefGoogle Scholar

  • [127]

    Tassin P, Koschny T, Kafesaki M, Soukoulis CM. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics 2012, 6, 259–264.CrossrefGoogle Scholar

  • [128]

    Neto AC, Guinea F, Peres N, Novoselov KS, Geim AK. The electronic properties of graphene. Rev. Modern Phys. 2009, 81, 109–162.CrossrefGoogle Scholar

  • [129]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209.CrossrefGoogle Scholar

  • [130]

    Li Z, Henriksen EA, Jiang Z, Hao Z, Martin MC, Kim P, Stormer HL, Basov DN. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 2008, 4, 532–535.CrossrefGoogle Scholar

  • [131]

    Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.CrossrefGoogle Scholar

  • [132]

    Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, Brink VD, Kelly PJ. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.CrossrefGoogle Scholar

  • [133]

    Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen RY, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.CrossrefGoogle Scholar

  • [134]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.CrossrefGoogle Scholar

  • [135]

    Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82–85.Google Scholar

  • [136]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Zurutuza A, Camara N, Abajo JGD, Hillenbrand R, Koppens F. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77–81.Google Scholar

  • [137]

    Allen Jr S, Tsui D, Logan R. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 1977, 38, 980–983.CrossrefGoogle Scholar

  • [138]

    Batke E, Heitmann D, Tu C. Plasmon and magnetoplasmon excitation in two-dimensional electron space-charge layers on GaAs. Phys. Rev. B 1986, 34, 6951–6960.CrossrefGoogle Scholar

  • [139]

    Hwang E, Sarma SD. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 2007, 75, 205418.CrossrefGoogle Scholar

  • [140]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634.CrossrefGoogle Scholar

  • [141]

    Lee SH, Choi M, Kim T-T, Lee S, Liu M, Yin X, Choi HK, Lee SS, Choi C-G, Choi S-Y, Zhang X, Min B. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 2012, 11, 936–941.CrossrefGoogle Scholar

  • [142]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334.CrossrefGoogle Scholar

  • [143]

    Bostwick A, Ohta T, Seyller T, Horn K, Rotenberg E. Quasiparticle dynamics in graphene. Nat. Phys. 2006, 3, 36–40.Google Scholar

  • [144]

    Eberlein T, Bangert U, Nair RR, Jones R, Gass M, Bleloch AL, Novoselov KS, Geim A, Briddon PR. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.CrossrefGoogle Scholar

  • [145]

    Brar VW, Wickenburg S, Panlasigui M, Park C-H, Wehling TO, Zhang Y, Decker R, Girit Ç, Balatsky AV, Louie SG, Zettl A, Crommie MF. Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. Phys. Rev. Lett. 2010, 104, 036805.CrossrefGoogle Scholar

  • [146]

    Zhou W, Lee J, Nanda J, Pantelides ST, Pennycook SJ, Idrobo JC. Atomically localized plasmon enhancement in monolayer graphene. Nat. Nanotechnol. 2012, 7, 161–165.CrossrefGoogle Scholar

  • [147]

    Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 2013, 7, 2388–2395.CrossrefGoogle Scholar

  • [148]

    Garcia-Pomar JL, Nikitin AY, Martin-Moreno L. Scattering of graphene plasmons by defects in the graphene sheet. ACS Nano 2013, 7, 4988–4994.CrossrefGoogle Scholar

  • [149]

    Thongrattanasiri S, de Abajo FJG. Optical field enhancement by strong plasmon interaction in graphene nanostructures. Phys. Rev. Lett. 2013, 110, 187401.CrossrefGoogle Scholar

  • [150]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FH, Garcì’a de Abajo FJ. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 2011, 6, 431–440.Google Scholar

  • [151]

    Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong J, Capasso F. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 2013, 13, 1257–1264.CrossrefGoogle Scholar

  • [152]

    Papasimakis N, Thongrattanasiri S, Zheludev NI, de Abajo FG. The magnetic response of graphene split-ring metamaterials. Light Sci. Appl. 2013, 2, e78.Google Scholar

  • [153]

    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 2013, 7, 394–399.CrossrefGoogle Scholar

  • [154]

    Nair R, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.CrossrefGoogle Scholar

  • [155]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.CrossrefGoogle Scholar

  • [156]

    Zhu J-J, Badalyan S, Peeters F. Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Phys. Rev. B 2013, 87, 085401.CrossrefGoogle Scholar

  • [157]

    Li Z, Yu N. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl. Phys. Lett. 2013, 102, 131108.CrossrefGoogle Scholar

  • [158]

    Llatser I, Christian K, Albert C-A, Miquel JJ, Eduard A, Chigrin DN. Graphene-based nano-patch antenna for terahertz radiation. Phot. Nano. Fund. Appl. 2012, 10, 353–358.CrossrefGoogle Scholar

  • [159]

    Auditore A, De Angelis C, Locatelli A, Boscolo S, Midrio M, Romagnoli M, Capobianco AD, Nalesso G. Graphene sustained nonlinear modes in dielectric waveguides. Opt. Lett. 2013, 38, 631–633.CrossrefGoogle Scholar

  • [160]

    Lee SH, Choi J, Kim H-D, Choi H, Min B. Ultrafast refractive index control of a terahertz graphene metamaterial. Sci. Rep. 2013, 3, 2135.Google Scholar

  • [161]

    Ebbesen TW, Lezec H, Ghaemi H, Thio T, Wolff P. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669.CrossrefGoogle Scholar

  • [162]

    Martin-Moreno L, García-Vida FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 2001, 86, 1114–1117.CrossrefGoogle Scholar

  • [163]

    Grischkowsky D, Keiding S, van Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 1990, 7, 2006–2015.CrossrefGoogle Scholar

  • [164]

    Niu J, Jun Shin Y, Lee Y, Ahn J-H, Yang H. Graphene induced tunability of the surface plasmon resonance. Appl. Phys. Lett. 2012, 100, 061116.CrossrefGoogle Scholar

  • [165]

    Kim J, Son H, Cho DJ, Geng B, Regan W, Shi S, Kim K, Zettl A, Shen Y-R, Wang F. Electrical control of optical plasmon resonance with graphene. Nano Lett. 2012, 12, 5598–5602.CrossrefGoogle Scholar

  • [166]

    Brar VW, Jang M, Sherrott M, Lopez JJ, Atwater HA. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 2013, 13, 2154–2157.Google Scholar

  • [167]

    Emani NK, Chung T-F, Ni X, Kildishev AV, Chen YP, Boltasseva A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 2012, 12, 5202–5206.CrossrefGoogle Scholar

  • [168]

    Brolo AG. Plasmonics for future biosensors. Nat. Photonics 2012, 6, 709–713.CrossrefGoogle Scholar

  • [169]

    West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 2003, 5, 285–292.CrossrefGoogle Scholar

  • [170]

    Homola J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539.CrossrefGoogle Scholar

  • [171]

    Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493.CrossrefGoogle Scholar

  • [172]

    Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.CrossrefGoogle Scholar

  • [173]

    Kabashin A, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871.CrossrefGoogle Scholar

  • [174]

    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787.CrossrefGoogle Scholar

  • [175]

    Lee J, Hernandez P, Lee J, Govorov AO, Kotov NA. Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 2007, 6, 291–295.CrossrefGoogle Scholar

  • [176]

    Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2011, 11, 69–75.CrossrefGoogle Scholar

  • [177]

    Kravets V, Schedin F, Jalil R, Britnell L, Gorbachev RV, Ansell D, Thackray B, Novoselov KS, Geim AK, Kabashin AV, Grigorenko AN. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 2013, 12, 304–309.CrossrefGoogle Scholar

  • [178]

    Brolo AG, Gordon R, Leathem B, Kavanagh KL. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 2004, 20, 4813–4815.CrossrefGoogle Scholar

  • [179]

    Tetz KA, Pang L, Fainman Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt. Lett. 2006, 31, 1528–1530.CrossrefGoogle Scholar

  • [180]

    Dahlin AB, Tegenfeldt JO, Höök F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 2006, 78, 4416–4423.CrossrefGoogle Scholar

  • [181]

    Abbas A, Linman MJ, Cheng Q. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 2011, 26, 1815–1824.CrossrefGoogle Scholar

  • [182]

    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA 2011, 108, 11784–11789.CrossrefGoogle Scholar

  • [183]

    Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298.CrossrefGoogle Scholar

  • [184]

    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715.CrossrefGoogle Scholar

  • [185]

    Shafiei F, Monticone F, Le KQ, Liu XX, Hartsfield T, Alù A, Li X. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. 2013, 8, 95–99.CrossrefGoogle Scholar

  • [186]

    Fano U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866–1878.CrossrefGoogle Scholar

  • [187]

    Chang W-S, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S. A plasmonic Fano switch. Nano Lett. 2012, 12, 4977–4982.CrossrefGoogle Scholar

  • [188]

    Argyropoulos C, Chen P-Y, Monticone F, D’Aguanno G, Alu A. Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys. Rev. Lett. 2012, 108, 263905.CrossrefGoogle Scholar

  • [189]

    Zheludev NI, Prosvirnin S, Papasimakis N, Fedotov V. Lasing spaser. Nat. Photonics 2008, 2, 351–354.CrossrefGoogle Scholar

  • [190]

    Luk’yanchuk BS, Chong TC, Shi LP, Tribelsky MI, Wang ZB, Li L, Qiu C-W, Sheppard CJR, Wu JH. in PhotonicsGlobal@ Singapore, 2008. IPGC 2008. IEEE. 1-4 (IEEE).Google Scholar

  • [191]

    Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008, 8, 3983–3988.CrossrefGoogle Scholar

  • [192]

    Christ A, Martin OJ, Ekinci Y, Gippius NA, Tikhodeev SG. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 2008, 8, 2171–2175.CrossrefGoogle Scholar

  • [193]

    Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 2007, 99, 147401.CrossrefGoogle Scholar

  • [194]

    Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 2009, 9, 1663–1667.CrossrefGoogle Scholar

  • [195]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758–762.CrossrefGoogle Scholar

  • [196]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 2009, 10, 1103–1107.Google Scholar

  • [197]

    Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S. Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. Phys. Rev. Lett. 2010, 105, 263601.CrossrefGoogle Scholar

  • [198]

    Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 2010, 5, 161–167.CrossrefGoogle Scholar

  • [199]

    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2008, 2, 687–692.CrossrefGoogle Scholar

  • [200]

    Simovski CR, Belov PA, Atrashchenko AV, Kivshar YS. Wire metamaterials: physics and applications. Adv. Mater. 2012, 24, 4229–4248.CrossrefGoogle Scholar

  • [201]

    Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, Turunen J, Svirko Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 2005, 95, 227401.CrossrefGoogle Scholar

  • [202]

    Schäferling M, Dregely D, Hentschel M, Giessen H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2012, 2, 031010.Google Scholar

  • [203]

    Tang Y, Cohen AE. Optical chirality and its interaction with matter. Phys. Rev. Lett. 2010, 104, 163901.CrossrefGoogle Scholar

  • [204]

    Barron LD. Molecular Light Scattering and Optical Activity, 2nd ed., Cambridge University Press: Cambridge, 2004.Google Scholar

  • [205]

    Tan SJ, Campolongo MJ, Luo D, Cheng W. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276.CrossrefGoogle Scholar

  • [206]

    Bishop KJ, Wilmer CE, Soh S, Grzybowski BA. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.CrossrefGoogle Scholar

  • [207]

    Gong J, Li G, Tang Z. Self-assembly of noble metal nanocrystals: fabrication, optical property, and application. Nano Today 2012, 7, 564–585.CrossrefGoogle Scholar

  • [208]

    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F. Self-assembled plasmonic nanoparticle clusters. Science 2010, 328, 1135–1138.CrossrefGoogle Scholar

  • [209]

    Prodan E, Radloff C, Halas N, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.CrossrefGoogle Scholar

  • [210]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004, 4, 899–903.CrossrefGoogle Scholar

  • [211]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Högele A, Simmel FC, Govorov AO, Liedl T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.Google Scholar

  • [212]

    Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.CrossrefGoogle Scholar

  • [213]

    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.CrossrefGoogle Scholar

  • [214]

    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG. Organization of ‘nanocrystal molecules’ using DNA. Nature 1996, 382, 609–611.CrossrefGoogle Scholar

  • [215]

    Mastroianni A, Claridge S, Alivisatos AP. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 2009, 131, 8455–8459.CrossrefGoogle Scholar

  • [216]

    Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 1998, 120, 12674–12675.CrossrefGoogle Scholar

  • [217]

    Aldaye FA, Sleiman HF. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 2204–2209.CrossrefGoogle Scholar

  • [218]

    Murray C, Kagan C, Bawendi M. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.CrossrefGoogle Scholar

  • [219]

    Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002, 295, 2418–2421.Google Scholar

  • [220]

    Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440.CrossrefGoogle Scholar

  • [221]

    Chen C-F, Tzeng S-D, Chen H-Y, Lin K-J, Gwo S. Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling. J. Am. Chem. Soc. 2008, 130, 824–826.CrossrefGoogle Scholar

  • [222]

    Lin M-H, Chen H-Y, Gwo S. Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties. J. Am. Chem. Soc. 2010, 132, 11259–11263.CrossrefGoogle Scholar

  • [223]

    Dong A, Ye X, Chen J, Murray CB. Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers. Nano Lett. 2011, 11, 1804–1809.CrossrefGoogle Scholar

  • [224]

    Henzie J, Grünwald M, Widmer-Cooper A, Geissler PL, Yang P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2011, 11, 131–137.CrossrefGoogle Scholar

  • [225]

    Leunissen ME, Christova CG, Hynninen A-P, Royall CP, Campbell AI, Imhof A, Dijkstra M, van Roij R, van Blaaderen A. Ionic colloidal crystals of oppositely charged particles. Nature 2005, 437, 235–240.Google Scholar

  • [226]

    Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.Google Scholar

  • [227]

    Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.Google Scholar

  • [228]

    Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.CrossrefGoogle Scholar

  • [229]

    Nahata A, Linke RA, Ishi T, Ohashi K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 2003, 28, 423–425.CrossrefGoogle Scholar

  • [230]

    Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760.Google Scholar

  • [231]

    Park I-Y, Kim S, Choi J, Lee D-H, Kim Y-J, Kling MF, Stockman MI, Kim S-W. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics 2011, 5, 677–681.CrossrefGoogle Scholar

  • [232]

    Klein MW, Enkrich C, Wegener M, Linden, S. Second-harmonic generation from magnetic metamaterials. Science 2006, 313, 502–504.CrossrefGoogle Scholar

  • [233]

    Klein MW, Wegener M, Feth N, Linden S. Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Exp. 2007, 15, 5238–5247.CrossrefGoogle Scholar

  • [234]

    Maslovski S, Tretyakov S. Phase conjugation and perfect lensing. J. Appl. Phys. 2003, 94, 4241–4243.CrossrefGoogle Scholar

  • [235]

    Pendry J. Time reversal and negative refraction. Science 2008, 322, 71–73.CrossrefGoogle Scholar

  • [236]

    Katko AR, Gu S, Barrett JP, Popa B-I, Shvets G, Cummer SA. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys. Rev. Lett. 2010, 105, 123905.CrossrefGoogle Scholar

  • [237]

    Palomba S, Zhang S, Park Y, Bartal G, Yin X, Zhang X. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat. Mater. 2011, 11, 34–38.CrossrefGoogle Scholar

  • [238]

    Harutyunyan H, Beams R, Novotny L. Controllable optical negative refraction and phase conjugation in graphite thin films. Nat. Phys. 2013, 9, 423–425.CrossrefGoogle Scholar

  • [239]

    Zharov AA, Shadrivov IV, Kivshar YS. Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 2003, 91, 037401.CrossrefGoogle Scholar

  • [240]

    Agranovich V, Shen Y, Baughman R, Zakhidov A. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 2004, 69, 165112.CrossrefGoogle Scholar

  • [241]

    Lazarides N, Eleftheriou M, Tsironis G. Discrete breathers in nonlinear magnetic metamaterials. Phys. Rev. Lett. 2006, 97, 157406.CrossrefGoogle Scholar

  • [242]

    Liu Y, Bartal G, Genov DA, Zhang X. Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 2007, 99, 153901.CrossrefGoogle Scholar

  • [243]

    Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, Zayats AV. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 2011, 6, 107–111.CrossrefGoogle Scholar

  • [244]

    Krasavin AV, Vo TP, Dickson W, Bolger PM, Zayats AV. All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano Lett. 2011, 11, 2231–2235.CrossrefGoogle Scholar

  • [245]

    Ren M, Plum E, Xu J, Zheludev NI. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun. 2012, 3, 833.CrossrefGoogle Scholar

  • [246]

    Lapine M, Shadrivov IV, Powell DA, Kivshar YS. Magnetoelastic metamaterials. Nat. Mater. 2011, 11, 30–33.CrossrefGoogle Scholar

  • [247]

    Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat. Phys. 2013, 9, 329–340.CrossrefGoogle Scholar

  • [248]

    Altewischer E, Van Exter M, Woerdman J. Plasmon-assisted transmission of entangled photons. Nature 2002, 418, 304–306.Google Scholar

  • [249]

    Ouyang F, Batson P, Isaacson M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 1992, 46, 15421.CrossrefGoogle Scholar

  • [250]

    Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012, 483, 421–427.Google Scholar

  • [251]

    Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ. Revealing the quantum regime in tunnelling plasmonics. Nature 2012, 491, 574–577.Google Scholar

  • [252]

    Scholl JA, García-Etxarri A, Koh AL, Dionne JA. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2013, 13, 564–569.CrossrefGoogle Scholar

  • [253]

    García de Abajo FJ. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 2008, 112, 17983–17987.CrossrefGoogle Scholar

  • [254]

    Fernández-Domínguez A, Wiener A, García-Vidal F, Maier S, Pendry J. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys. Rev. Lett. 2012, 108, 106802.CrossrefGoogle Scholar

  • [255]

    Esteban R, Borisov AG, Nordlander P, Aizpurua J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 2012, 3, 825.CrossrefGoogle Scholar

  • [256]

    Jacob Z, Kim J-Y, Naik GV, Boltasseva A, Narimanov EE, Shalaev VM. Engineering photonic density of states using metamaterials. Appl. Phys. B 2010, 100, 215–218.CrossrefGoogle Scholar

  • [257]

    Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature 2009, 460, 1110–1112.CrossrefGoogle Scholar

  • [258]

    Oulton RF, Sorger VJ, Zentgraf T, Ma R-M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632.CrossrefGoogle Scholar

  • [259]

    Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007, 450, 402–406.CrossrefGoogle Scholar

  • [260]

    Chang DE, Sørensen AS, Demler EA, Lukin MD. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 2007, 3, 807–812.CrossrefGoogle Scholar

  • [261]

    Falk AL, Koppens FHL, Yu CL, Kang K, de Leon Snapp N, Akimov AV, Jo M-H, Lukin MD, Park H. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 2009, 5, 475–479.CrossrefGoogle Scholar

  • [262]

    Driscoll T, Kim H-T, Chae B-G, Kim B-J, Lee Y-W, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN. Memory metamaterials. Science 2009, 325, 1518–1521.CrossrefGoogle Scholar

  • [263]

    Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K, Keiser GR, Sternbach AJ, West KG, Kittiwatanakul S, Lu J, Wolf SA, Omenetto FG, Zhang X, Nelson KA, Averitt RD. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348.Google Scholar

  • [264]

    Wang J, Liu S, Nahata A. Reconfigurable plasmonic devices using liquid metals. Opt. Exp. 2012, 20, 12119–12126.CrossrefGoogle Scholar

  • [265]

    Khoo I, Werner D, Liang X, Diaz A, Weiner B. Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. Opt. Lett. 2006, 31, 2592–2594.CrossrefGoogle Scholar

  • [266]

    Liu Q, Cui Y, Gardner D, Li X, He S, Smalyukh II. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 2010, 10, 1347–1353.CrossrefGoogle Scholar

  • [267]

    Urzhumov Y, Lee JS, Tyler T, Dhar S, Nguyen V, Jokerst NM, Schmalenberg P, Smith DR. Electronically reconfigurable metal-on-silicon metamaterial. Phys. Rev. B 2012, 86, 075112.CrossrefGoogle Scholar

  • [268]

    Liu A, Zhu W, Tsai D, Zheludev, N. Micromachined tunable metamaterials: a review. J. Opt. 2012, 14, 114009.CrossrefGoogle Scholar

  • [269]

    Ou J-Y, Plum E, Zhang J, Zheludev NI. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol. 2013, 8, 252–255.CrossrefGoogle Scholar

  • [270]

    Zhao C, Liu Y, Zhao Y, Fang N, Huang TJ. A reconfigurable plasmofluidic lens. Nat. Commun. 2013, 4, 2305.Google Scholar

About the article

Kan Yao

Kan Yao is currently a PhD student in the Department of Electrical and Computer Engineering at Northeastern University. He received his Bachelor’s and Master’s degree from the University of Science and Technology of China (2006) and the Institute of Electronics, Chinese Academy of Sciences (2009), respectively. From the summer of 2009, he worked as a research assistant at the Shanghai Institute of Microsystem and Information Technology (until the summer of 2011) and then visited the School of Physical Science and Technology in Soochow University (until the summer of 2012). His research interests include plasmonics, metamaterials, transformation optics, electromagnetics, and other topics concerning fields and waves phenomena.

Yongmin Liu

Professor Yongmin Liu received his BS and MS degrees in Physics from Nanjing University (Nanjing, China) in 2000 and 2003, respectively. After obtaining his PhD degree from the University of California, Berkeley in 2009, he stayed at UC Berkeley as a postdoctoral fellow for 3 years. In the fall of 2012, he joined the faculty of Northeastern University at Boston, with a joint appointment in the Department of Mechanical and Industrial Engineering and the Department of Electrical and Computer Engineering. Professor Liu’s research interests include nano-optics, nanoscale materials and engineering, nano devices, plasmonics, metamaterials, biophotonics, nano optomechanics, and nonlinear and quantum optics of metallic nanostructures. He has authored and co-authored over 30 journal papers included in Science, Nature, Nature Nanotechnology, Nature Communications, Physical Review Letters, and Nano Letters. Professor Liu is the recipient of the Chinese Government Award for Outstanding Students Abroad (2009), the International Society for Optical Engineering (SPIE) Scholarship Award (2008), and the Tse-Wei Liu Memorial Fellowship at UC-Berkeley (2008). He currently serves as an editorial board member for the journal Scientific Reports.

Corresponding author: Yongmin Liu, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; and Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA, e-mail:

Received: 2013-08-22

Accepted: 2013-11-20

Published Online: 2014-01-10

Published in Print: 2014-04-01

Citation Information: Nanotechnology Reviews, Volume 3, Issue 2, Pages 177–210, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2012-0071.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Guanqiao Zhang, Chuwen Lan, Rui Gao, Yongzheng Wen, and Ji Zhou
The Journal of Physical Chemistry C, 2018
Milo Baraclough, Ian R. Hooper, and William L. Barnes
Physical Review B, 2018, Volume 98, Number 8
Shobhit K. Patel, Karan H. Shah, and Y. P. Kosta
Waves in Random and Complex Media, 2018, Page 1
Fabian Meder, Steffi S. Thomas, Tobias Bollhorst, and Kenneth A. Dawson
Nano Letters, 2018
Gary W. Paterson, Affar S. Karimullah, Scott G. Smith, Malcolm Kadodwala, and Donald A. MacLaren
The Journal of Physical Chemistry C, 2018
Aline Pham, Airong Zhao, Quanbo Jiang, Joel Bellessa, Cyriaque Genet, and Aurélien Drezet
ACS Photonics, 2018
Patrick T. Probst, Sribharani Sekar, Tobias A. F. König, Petr Formanek, Gero Decher, Andreas Fery, and Matthias Pauly
ACS Applied Materials & Interfaces, 2018
Masih Ghasemi and P.K. Choudhury
Optik - International Journal for Light and Electron Optics, 2016, Volume 127, Number 20, Page 9932
Ji-Hun Kang and Q-Han Park
IEEE Transactions on Terahertz Science and Technology, 2016, Volume 6, Number 3, Page 371
A. I. Kovalev, D. L. Wainstein, A. Yu. Rashkovskiy, R. Gago, F. Soldera, and J. L. Endrino
Applied Physics Letters, 2016, Volume 108, Number 22, Page 223106
Ian F. Akyildiz and Josep Miquel Jornet
Nano Communication Networks, 2016, Volume 8, Page 46
M Alaoui, K Rustomji, T M Chang, G Tayeb, P Sabouroux, R Quidant, S Enoch, S Guenneau, and R Abdeddaim
Journal of Optics, 2016, Volume 18, Number 4, Page 044023
Matan Galanty, Shira Yochelis, Liron Stern, Irene Dujovne, Uriel Levy, and Yossi Paltiel
The Journal of Physical Chemistry C, 2015, Volume 119, Number 44, Page 24991
Xiangang Luo, Mingbo Pu, Xiaoliang Ma, and Xiong Li
International Journal of Antennas and Propagation, 2015, Volume 2015, Page 1
M I Bakunov, S M Kuznetsova, and A V Maslov
Journal of Optics, 2015, Volume 17, Number 10, Page 105106

Comments (0)

Please log in or register to comment.
Log in