[1]

Azzam RMA. The intertwined history of polarimetry and ellipsometry*. Thin Sol. Films* 2011, 519, 2584–2588.Google Scholar

[2]

Azzam RMA, Bashara NM. *Ellipsometry and Polarized Light*, Elsevier North Holland Pub. Co.: Amsterdam, 1977.Google Scholar

[3]

Tompkins HG, Irene EA. *Handbook of Ellipsometry*, Springer, 2005.Google Scholar

[4]

Fujiwara H. *Spectroscopic Ellipsometry: Principles and Applications*, Wiley: Chichester, UK, 2007.Google Scholar

[5]

Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic Z, Saxl O. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. *J. Nanopart. Res.* 2009, 11, 1521–1554.CrossrefGoogle Scholar

[6]

Oates TWH, Wormeester H, Arwin H. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. *Prog. Surf. Sci.* 2011, 86, 328–376.CrossrefGoogle Scholar

[7]

Losurdo M, Hingerl K. Ellipsometry at the nanoscale. Springer-Verlag: Berlin Heidelberg, 2013.Google Scholar

[8]

Naik GV, Shalaev V, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. *Adv. Mat.* 2013, 25, 3264–3294.CrossrefGoogle Scholar

[9]

Khurgin J, Boltasseva A. Reflecting upon the losses in plasmonics and metamaterials. *MRS Bull.* 2012, 37, 768–779.CrossrefGoogle Scholar

[10]

Wagner T, Hilfiker JN, Tiwald TE, Bungay CL, Zollner S. Materials characterization in the vacuum ultraviolet with variable angle spectroscopic ellipsometry. *Phys. Stat. Sol. (A)* 2001, 4, 1553–1562.CrossrefGoogle Scholar

[11]

Kamineni VM, Hilfiker JN, Freeouf JL, Consiglio S, Clark R, Leusink GJ, Diebold AC. Extension to the far UV spectroscopic ellipsometry studies of high-k dielectric films to 130 nm. *Thin Sol. Films* 2011, 519, 2894–2898.Google Scholar

[12]

Saenger MF, Höing T, Robertson BW, Billa RB, Hofmann T, Schubert E, Schubert M. Polaron and phonon properties in proton intercalated amorphous tungsten oxide thin films. *Phys. Rev. B* 2008, 78, 245205.CrossrefGoogle Scholar

[13]

Dubroka A, Rössle M, Kim KW, Malik VK, Schultz L, Thiel S, Schneider CW, Mannhart J, Herranz G, Copie O, Bibes M, Barthélémy A, Bernhard C. *Phys. Rev. Lett.* 2010, 104, 156807.Google Scholar

[14]

Tiwald TE, Woollam JA, Zollner S, Christiansen J, Gregory RB. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. *Phys. Rev. B* 1999, 60, 11464.CrossrefGoogle Scholar

[15]

Hinrichs K, Gensch M, Esser N. Analysis of organic films and interfacial layers by infrared spectroscopic ellipsometry. *Appl. Spectro.* 2005, 59, 272A.CrossrefGoogle Scholar

[16]

Hofmann T, Herzinger CM, Boosalis A, Tiwald TE, Woollam JA, Schubert M. Variable-wavelength frequency-domain terahertz ellipsometry. *Rev. Sci. Instr.* 2010, 81, 023101.CrossrefGoogle Scholar

[17]

Neshat M, Armitage NP. Developments in THz range ellipsometry. *J. Infrared Milli Terahz Waves* 2013, 34, 682–708.Google Scholar

[18]

Schöche S, Hofmann T, Darakchieva V, Ben Sedrine N, Wang X, Yoshikawa A, Schubert M. Infrared to vacuum-ultraviolet ellipsometry and optical Hall-effect study of free-charge carrier parameters in Mg-doped InN. *J. Appl. Phys.* 2013, 113, 013502.CrossrefGoogle Scholar

[19]

Tediosi R, Armitage NP, Giannini E, Van der Marel D. Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth. *Phys. Rev. Lett.* 2007, 99, 016406.CrossrefGoogle Scholar

[20]

Karageorgiev P, Orendi H, Stiller B, Brehmer L. Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range. *Appl. Phys. Lett.* 2011, 79, 1730–1732.Google Scholar

[21]

Tranchida D, Diaz J, Schön P, Schönherr H, Julius Vancso G. Scanning near-field ellipsometry microscopy: imaging nanomaterials with resolution below the diffraction limit. *Nanoscale* 2011, 3, 233–239.CrossrefGoogle Scholar

[22]

Schubert M, Rheinländer B, Woollam JA, Johs B, Herzinger CM. Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO_{2}. *J. Opt. Soc. Am.* 1996, 13, 875–883.CrossrefGoogle Scholar

[23]

Schubert M. Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. *Phys. Rev. B* 1996, 53, 4265.CrossrefGoogle Scholar

[24]

Hofmann T, Herzinger CM, Krahmer C, Streubel K, Schubert M. The optical Hall effect. *Phys. Stat. Sol. (A)* 2008, 4, 1179–1183.Google Scholar

[25]

Hofmann T, Herzinger CM, Tedesco JL, Gaskill DK, Woollam JA, Schubert M. Terahertz ellipsometry and terahertz optical-Hall effect. *Thin Sol. Films* 2011, 519, 2593–2600.Google Scholar

[26]

Toudert J. *Modeling and optical characterization of the localized surface plasmon resonances of tailored metal nanoparticles, in UV-Vis and photoluminescence spectroscopy for nanomaterials characterization*, Kumar C, Ed., Springer-Verlag: Berlin Heidelberg, 2013.Google Scholar

[27]

Paulson PD, Hegedus SS. Accurate determination of optical constants of textured SnO_{2} using low incidence angle spectroscopic ellipsometry. *J. Appl. Phys.* 2004, 96, 5469–5477.CrossrefGoogle Scholar

[28]

Necas D, Franta D, Bursikova V, Ohlidal I. Ellipsometric characterisation of thin films non-uniform in thickness. *Thin Sol. Films* 2011, 519, 2715–2717.Google Scholar

[29]

Franta D, Necas D, Ohlidahl I. Anisotropy-enhanced depolarization on transparent film/substrate system. *Thin Sol. Films* 2011, 519, 2637–2640.Google Scholar

[30]

Soukoulis CM, Wegener M. Past achievements and future challenges in 3D photonic metamaterials. *Nat. Photon.* 2011, 5, 523–530.Google Scholar

[31]

Tiwald T. *Metamaterials and the Meta-6 Layer*. J.A. Woollam Co. Inc. Newsletter: Lincoln, Nebraska, USA, 2011, 12.Google Scholar

[32]

Rogers PD, Kang TD, Zhou T, Kotelyanskii M, Sirenko AA. Mueller matrices for anisotropic metamaterials generated using 4*4 formalism. *Thin Sol. Films* 2011, 519, 2668–2673.Google Scholar

[33]

Chen C, Horn MW, Pursel S, Ross C, Collins RW. The ultimate in real-time ellipsometry: multichannel Mueller matrix ellipsometry. *Appl. Surf. Sci.* 2006, 253, 38–46.CrossrefGoogle Scholar

[34]

Tiwald TE, VanDerslice J. Method for enhancing sensitivity to out-of-plane properties of uniaxially anisotropic absorbing materials with surface-normal oriented optic-axis. Communication at the ICSE VI conference, Kyoto, Japan 2013.Google Scholar

[35]

Kattner J, Hoffmann H. Simultaneous determination of thicknesses and refractive indices of ultrathin films by multiple incidence medium ellipsometry. *J. Phys. Chem. B* 2002, 106, 9723–9729.CrossrefGoogle Scholar

[36]

Mc Mahon JM, Schatz GC, Gray SK. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb and Bi. *Phys. Chem. Chem. Phys.* 2013, 15, 5415–5423.CrossrefGoogle Scholar

[37]

Khurgin JB, Sun G. In search of the elusive lossless metal. *Appl. Phys. Lett.* 2010, 96, 181102.CrossrefGoogle Scholar

[38]

Blaber MG, Arnold MD, Ford MJ. A review of the optical properties of alloys and intermetallics for plasmonics. *J. Phys. C: Cond. Mat.* 2010, 22, 143201–143227.CrossrefGoogle Scholar

[39]

Tripura Sundari S, Chandra S, Tyagi AK. Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations. *J. Appl. Phys.* 2013, 114, 033515.CrossrefGoogle Scholar

[40]

Olmon RL, Slovick B, Johson TW, Shelton D, Oh SH, Boreman GD, Raschke MB. Optical dielectric function of gold. *Phys. Rev. B* 2012, 86, 235147.CrossrefGoogle Scholar

[41]

Chen KP, Drachev VP, Borneman JD, Kildishev AV, Shalaev AV. Drude relaxation rate in grained gold nanoantennas. *Nano Lett.* 2010, 10, 916–922.CrossrefGoogle Scholar

[42]

Park JH, Nagpal P, Oh SH, Norris DJ. Improved dielectric functions in metallic films obtained via template stripping. *Appl. Phys. Lett.* 2012, 100, 081105.CrossrefGoogle Scholar

[43]

Diest K, Liberman V, Lennon DM, Welander PB, Rothschild M. Aluminium plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry. *Opt. Expr.* 2013, 21, 28638.CrossrefGoogle Scholar

[44]

Debessai M, Filip P, Aouadi SM. Niobium zirconium nitride sputter-deposited protective coatings. *Appl. Surf. Sci.* 2004, 236, 63–70.CrossrefGoogle Scholar

[45]

Aouadi SM, Wong KC, Mitchell KAR, Namavar F, Tobin E, Mihut DM, Rohde SL. Characterization of titanium chromium nitride nanocomposite protective coatings. *Appl. Surf. Sci.* 2004, 229, 387–394.CrossrefGoogle Scholar

[46]

Aouadi SM, Debessai M, Namavar F, Wong KC, Mitchell KAR. Titanium boron nitride films grown by ion beam deposition: chemical and optical characterization. *Surf. Coat. Tech.* 2004, 183, 369–377.CrossrefGoogle Scholar

[47]

Aouadi SM, Bohnhof A, Amriou T, Haasch RT, Williams M, Hilfiker JN. Electronic and optical properties of Ta_{1-x}Zr_{x}N films: experimental and ab initio studies. *J. Vac. Sci. Technol.* A 2005, 23, 705.CrossrefGoogle Scholar

[48]

Aouadi SM, Bohnohf A, Amriou T, Williams M, Hilfiker JN, Singh N, Woollam JA. Vacuum ultra-violet spectroscopic ellipsometry study of single- and multi-phase nitride protective films. *J. Phys. Condens. Matter* 2006, 18, S1691–S1701.CrossrefGoogle Scholar

[49]

Tripura Sundari S, Ramaseshan R, Jose F, Dash S, Tyagi AK. Temperature dependence of dielectric constants in titanium nitride. *J. Appl. Phys.* 2014, 115, 033516.CrossrefGoogle Scholar

[50]

Logothetidis S, Meletis EI, Stergioudis G, Adjaottor AA. Room temperature oxidation behavior of TiN thin films. *Thin Sol. Films* 1999, 338, 304–313.CrossrefGoogle Scholar

[51]

Guler U, Naik GV, Boltasseva A, Shalaev VM, Kildishev AV. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. *Appl. Phys. B* 2012, 107, 285–291.CrossrefGoogle Scholar

[52]

Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A. Titanium nitride as a plasmonic material for visible and near infrared wavelengths. *Opt. Mater. Exp.* 2012, 2, 478.CrossrefGoogle Scholar

[53]

Minami T. Transparent conducting oxide semiconductors for transparent electrodes. *Semicond. Sci. Technol.* 2005, 20, S35–S44.CrossrefGoogle Scholar

[54]

Gerfin T, Grätzel M. Optical properties of tin-indium oxide determined by spectroscopic ellipsometry. *J. Appl. Phys.* 1996, 79, 1722.CrossrefGoogle Scholar

[55]

Baum M, Alexeev I, Latzel M, Christiansen SH, Schmidt M. Determination of the effective refractive index of nanoparticulate ITO layers. *Opt. Exp.* 2013, 21, 22754.CrossrefGoogle Scholar

[56]

Rovira PI, Collins RW. Analysis of the specular and textured SnO_{2}:F films by high speed four-parameter Stokes vector spectroscopy. *J. Appl. Phys.* 1999, 85, 2015.CrossrefGoogle Scholar

[57]

Akagawa M, Fujiwara H. Optical characterization of textured SnO_{2}:F layers using spectroscopic ellipsometry. *J. Appl. Phys.* 2012, 112, 083507.CrossrefGoogle Scholar

[58]

Volintiru I, Creatore M, van de Sanden MCM. In situ spectroscopic ellipsometry growth studies on the Al-ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition. *J. Appl. Phys.* 2008, 103, 033704.CrossrefGoogle Scholar

[59]

Fujiwara H, Kondo M. Effect of carrier concentration on the dielectric function of ZnO:Ga and In_{2}O_{3}:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption. *Phys. Rev. B* 2005, 71, 075109.CrossrefGoogle Scholar

[60]

Naik GV, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range. *Opt. Mat. Exp.* 2011, 1, 1090.CrossrefGoogle Scholar

[61]

Sachet E, Losego MD, Guske J, Franzen S, Maria JP. Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films. *Appl. Phys. Lett.* 2013, 102, 051111.CrossrefGoogle Scholar

[62]

Garcia G, Buansanti llorders A, Runnerstrom, Bergerud A, Milliron DJ. Near-infrared spectrally selective plasmonic electrochromic thin films. *Adv. Opt. Mater.* 2013, 1, 215–220.CrossrefGoogle Scholar

[63]

Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C. Plasmonic Cu_{2-x}S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. *J. Am. Chem. Soc.* 2009, 131, 4253–4261.CrossrefGoogle Scholar

[64]

Dorfs D, Härtling T, Miszta K, Bigall NC, Kim MR, Genovese A, Falqui A, Povia M, Manna L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu_{2-x}Se nanocrystals. *J. Am. Chem. Soc.* 2011, 133, 11175–11180.CrossrefGoogle Scholar

[65]

Zhu G, Gu L, Kitur J K, Urbas A, Vella J, Noginov MA. Organic materials with negative and controllable electric permittivity. Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest 2011 paper: QThC3.Google Scholar

[66]

Toudert J, Serna R, Jiménez de Castro M. Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. *J. Phys. Chem. C* 2012, 116, 20530–20539.CrossrefGoogle Scholar

[67]

Lautenschlager P, Garriga M, Viña L, Cardona M. Temperature dependence of the dielectric function and interband critical points in silicon. *Phys. Rev. B* 1987, 36, 4821.CrossrefGoogle Scholar

[68]

Logothetidis S, Polatoglou HM, Petalas, Fuchs D, Johnson RL. Investigation of the electronic transitions of cubic SiC. *Physica B* 1993, 185, 388–393.Google Scholar

[69]

Feneberg M, Röppischer M, Cobet C, Esser N, Schörmann J, Schupp T, As DJ, Hörich F, Bläsing J, Krost A, Goldhahn R. Optical properties of GaN from 1 to 20 eV. *Phys. Rev. B* 2012, 85, 155207.CrossrefGoogle Scholar

[70]

Viña L, Logothetidis S, Cardona M. Temperature dependence of the dielectric function of germanium. *Phys. Rev. B* 1984, 30, 1979.CrossrefGoogle Scholar

[71]

Arakawa ET, Inagaki T, Williams MW. Optical properties of metals by spectroscopic ellipsometry. *Surf. Sci.* 1980, 96, 248–274.CrossrefGoogle Scholar

[72]

Vivekchand SRC, Engel CJ, Lubin SM, Blaber MG, Zhou W, Suh JY, Schatz GC, Odom TW. Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions. *Nano Lett.* 2012, 12, 4324–4328.CrossrefGoogle Scholar

[73]

Dogel S, Nattland D, Freyland W. Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single-wavelength and spectroscopic ellipsometry studies. *Phys. Rev. B* 2005, 72, 085403.CrossrefGoogle Scholar

[74]

Inagaki T, Arakawa ET, Cathers AR, Glastad KA. Optical properties of Pb and Bi between 0.6 and 3.7 eV. *Phys. Rev. B* 1982, 25, 6130–6138.Google Scholar

[75]

Haro Poniatowski E, Serna R, Jiménez de Castro M, Súarez García A, Afonso CN, Vickridge I. Size-dependent thermo-optical properties of embedded Bi nanostructures. *Nanotechnology* 2008, 19, 485708.CrossrefGoogle Scholar

[76]

Nattland D, Müller SC, Poh PD, Freyland W. Wetting phenomena at the liquid-vapor interface of gallium-bismuth alloys studied by spectroscopic ellipsometry. *J. Non-Cryst. Sol.* 1996, 205–207, 772–775.Google Scholar

[77]

Bartel K, Nattland D, Kumar A, Dogel S, Freyland W. Ellipsometric characterization of surface freezing in Ga-based alloys. *J. Phys. Cond. Matter* 2006, 18, 3535–3542.CrossrefGoogle Scholar

[78]

Staroske S, Freyland W, Nattland D. Tetra point wetting liquid K-KCl mixtures: spectroscopic characterization of the mesoscopic wetting and prewetting films. *J. Chem. Phys.* 2001, 115, 7669.CrossrefGoogle Scholar

[79]

Freyland W. Interfacial phase transitions in conducting fluids. *Phys. Chem. Chem. Phys.* 2008, 10, 923–936.CrossrefGoogle Scholar

[80]

Havstad MA, McLean W, Self SA. Apparatus for the measurement of the optical constants and thermal radiative properties of pure liquid metals from 0.4 to 10 um. *Rev. Sci. Instr.* 1993, 84, 1971–1978.Google Scholar

[81]

Schmid M, Zhender S, Schwaller P, Neuenschwander B, Zürcher J, Hunziker U. Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining. *Proc. SPIE* 2013, 8607.Google Scholar

[82]

Sheldon RI, Rinehart GH, Lashley JC, Van Pelt CE, Nordine PC, Krishnan S, Weber J K R. The optical properties of liquid plutonium at 632.8 nm. *J. Nucl. Mater.* 2003, 312, 207–211.Google Scholar

[83]

Sheldon RI, Rinehart GH, Krishnan S, Nordine PC. The optical properties of liquid cerium at 632.8 nm. *Mater. Sci. Eng. B* 2001, 79, 113–122.Google Scholar

[84]

Krishnan S, Richard Weber JK, Anderson CD, Nordine PC, Morton CT, Hofmeister H, Bayuzick RJ. Supersaturation and optical properties of metal-rich Zr-O and Zr-N liquids. *Mater. Sci. Eng.* 1996, A219, 21–25.Google Scholar

[85]

Nagashima M, Wada H. Near infrared properties of laser ablated VO_{2} thin films by ellipsometry. *Thin Sol. Films* 1998, 312, 61–65.CrossrefGoogle Scholar

[86]

Nazari M, Zhao Y, Kuryatkov VV, Fan ZY, Bernussi AA, Holtz M. Temperature dependence of the optical properties of VO_{2} deposited on sapphire with different orientations. *Phys. Rev. B* 2013, 87, 035142.CrossrefGoogle Scholar

[87]

Ishiwata Y, Suehiro S, Kida T, Ishii H, Tezuka Y, Osato H, Watanabe E, Tsuya D, Inagaki Y, Kawae T, Nantoh M, Ishibaki K. Spontaneous uniaxial strain and disappearance of the metal-insulator transition in monodisperse V_{2}O_{3} nanocrystals. *Phys. Rev. B* 2012, 86, 035449.CrossrefGoogle Scholar

[88]

Qazilbash MM, Schafgans AA, Burch KS, Yun SJ, Chae BG, Kim BJ, Kim HT, Basov DN. Electrodynamics of the vanadium oxides VO_{2} and V_{2}O_{3}. *Phys. Rev. B* 2008, 77, 115121.Google Scholar

[89]

Stewart MK, Brownstead D, Wang S, West KG, Ramirez JG, Qazilbash MM, Perkins NB, Schuller IK, Basov BN. Insulator-to-metal transition and correlated metallic state of V_{2}O_{3} investigated by optical spectroscopy. *Phys. Rev. B* 2012, 85, 205113.CrossrefGoogle Scholar

[90]

Lopez R, Haynes TE, Boatner LA, Feldman LC, Haglund Jr RF. Temperature-controlled surface plasmon resonance in VO_{2} nanorods. *Opt. Lett.* 2002, 27, 1327.CrossrefGoogle Scholar

[91]

Rini M, Cavalleri A, Schoenlein RW, López R, Feldman LC, Haglund Jr RF, Boatner LA, Haynes TE. Photoinduced phase transition in VO_{2} nanocrystals: ultrafast control of surface plasmon resonance. *Opt. Lett.* 2005, 30, 558.CrossrefGoogle Scholar

[92]

Li S Y, Niklasson GA, Granqvist CG. Nanothermochromics: calculations for VO_{2} nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. *J. Appl. Phys.* 2010, 108, 063525.CrossrefGoogle Scholar

[93]

Ferrara DW, Nag J, MacQuarrie ER, Kaye AB, Haglund Jr RF. Plasmonic probe of the semiconductor to metal phase transition vanadium dioxide. *Nano Lett.* 2013, 13, 4169.CrossrefGoogle Scholar

[94]

Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M. Resonant bonding in crystalline phase-change materials. *Nat. Mater.* 2008, 7, 653.CrossrefGoogle Scholar

[95]

Wei SJ, Zhu HF, Chen K, Xu D, Li J, Gan FX, Zhang Y, Xia YJ, Li GH. Phase change behavior in titanium-doped Ge_{2}Sb_{2}Te_{5} films. *Appl. Phys. Lett.* 2011, 98, 231910.CrossrefGoogle Scholar

[96]

Wei S J, Li J, Wu X, Zhou P, Wang S, Zheng Y, Chen L, Gan F, Zhang X, Li G. Phase change characteristics of aluminium doped Ge_{2}Sb_{2}Te_{5} films prepared by magnetron sputtering. *Opt. Exp.* 2007, 15, 10584.CrossrefGoogle Scholar

[97]

Wang K, Wamwangi D, Ziegler S, Steimer C, Wuttig M. Influence of Bi doping upon the phased change characteristics of Ge_{2}Sb_{2}Te_{5}. *J. Appl. Phys.* 2004, 96, 5557.CrossrefGoogle Scholar

[98]

Kuwahara M, Endo R, Tsutsumi K, Morkosa F, Tsuruoka T, Fukaya T, Suzuki M, Susa M, Endo T, Tadokoro T. Approach for measuring complex refractive index of molten Sb_{2}T_{3} by spectroscopic ellipsometry. *Appl. Phys. Lett.* 2012, 100, 101910.CrossrefGoogle Scholar

[99]

Drevillon B. Spectroscopic ellipsometry of ultrathin films: from UV to IR. *Thin Sol. Films* 1988, 163, 157–166.CrossrefGoogle Scholar

[100]

Antoine AM, Drevillon B. In-situ investigation of the early stage of the growth of a-Si:H on silica and tin dioxide substrates. *J. Non-Cryst. Sol.* 1987, 97–98, 1403–1406.Google Scholar

[101]

Marsillac S, Collins RW. Spectroscopic ellipsometry: metrology for photovoltaics from the nanoscale to gigawatts. *Proc. SPIE* 2012, 8256, 825613.Google Scholar

[102]

Oates TWH, Ryves L, Bilek MMM. Dynamic spectroscopic ellipsometry determination of nanostructural changes in plasmonic silver films. *Opt. Exp.* 2007, 15, 15987.CrossrefGoogle Scholar

[103]

Fujiwara H, Kondo M, Matsuda A. Real-time spectroscopic ellipsometry studies of the nucleation and grain growth processes in microscrystalline silicon thin films. *Phys. Rev. B* 2001, 63, 115306.CrossrefGoogle Scholar

[104]

Hövel M, Gompf B, Dressel M. Dielectric properties of ultrathin metal films around the percolation threshold. *Phys. Rev. B* 2010, 81, 035402.CrossrefGoogle Scholar

[105]

Oates TWH, McKenzie DR, Bilek MMM. Percolation threshold in ultrathin titanium thin films determined by in situ spectroscopic ellipsometry. *Phys. Rev. B* 2004, 70, 195406.CrossrefGoogle Scholar

[106]

Little SA, Begou T, Collins RW, Marsillac S. Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry. *Appl. Phys. Lett.* 2012, 100, 051107.CrossrefGoogle Scholar

[107]

Wu PC, Losurdo M, Kim TH, Giangregorio M, Bruno G, Everitt HO, Brown AS. Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge. *Langmuir* 2009, 25, 924–930.CrossrefGoogle Scholar

[108]

Wu PC, Kim TH, Suvorova A, Giangregorio M, Saunders M, Bruno G, Brown AS, Losurdo M. GaMg alloy nanoparticles for broadly tunable plasmonics. *Small* 2011, 7, 751–756.CrossrefGoogle Scholar

[109]

Yi C, Kim TH, Jiao W, Yang Y, Lazarides A, Hingerl K, Bruno G, Brown A, Losurdo M. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC. *Small* 2012, 8, 2721–2730.CrossrefGoogle Scholar

[110]

Wu PC, Kim TH, Brown AS, Losurdo M, Bruno G, Everitt HO. Real-time resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry. *Appl. Phys. Lett.* 2007, 90, 103119.CrossrefGoogle Scholar

[111]

Wu PC, Losurdo M, Kim TH, Garcia-Cueto B, Moreno F, Bruno G, Brown AS. Ga-Mg core-shell nanosystem for a novel full color plasmonics. *J. Phys. Chem.* *C* 2011, 115, 13571–13576.CrossrefGoogle Scholar

[112]

Koh J, Lu Y. Wronski CR, Kuang Y, Collins RW, Tsong TT, Strausser Y E. Correlation of real time spectroellipsometry and atomic force microscopy measurements of surface roughness on amorphous semiconductor thin films. *Appl. Phys. Lett.* 1996, 69, 1297.CrossrefGoogle Scholar

[113]

Uhrenfeld C, Chevallier J, Larsen AN, Nielsen BB. Near-infrared-ultraviolet absorption cross sections for Ge nanocrystals in SiO_{2} thin films: effects of shape and layer structure. *J. Appl. Phys.* 2011, 109, 094314.CrossrefGoogle Scholar

[114]

Bulutay C. Interband, intraband, and excited-state direct photon absorption of silicon and germanium nanocrystals embedded in a wide band-gap lattice. *Phys. Rev. B* 2007, 76, 205321.CrossrefGoogle Scholar

[115]

Amans D, Callard S, Gagnaire A, Joseph J, Ledoux G, Huisken F. Ellipsometric study of silicon nanocrystal optical constants. *J. Appl. Phys.* 2003, 93, 4173.CrossrefGoogle Scholar

[116]

Gallas B, Stenger I, Kao CC, Fisson S, Vuye G, Rivory J. Optical properties of Si nanocrystals embedded in SiO_{2}. *Phys. Rev. B* 2005, 72, 155319.CrossrefGoogle Scholar

[117]

Mansour M, En Naciri A, Johann L, Grob JJ, Stchakovsky M. Dielectric function and optical transitions of silicon nanocrystals between 0.6 eV and 6.5 eV. *Phys. Stat. Sol. (a)* 2008, 205, 845–848.Google Scholar

[118]

Fujiwara H, Koh J, Collins RW. Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films. *Phys. Rev. B* 2000, 61, 10832.CrossrefGoogle Scholar

[119]

Moreno JA, Garrido B, Pellegrino P, Garcia C, Arbiol J, Morante JR, Marie P, Gourbilleau F, Rizk R. Size dependence of refractive index of Si nanoclusters embedded in SiO_{2}. *J. Appl. Phys.* 2005, 98, 013523.CrossrefGoogle Scholar

[120]

Ding L, Chen TP, Liu Y, Yang M, Wong JI, Liu YC, Trigg DA, Zhu FR, Tan MC, Fung S. Influence of nanocrystal size on optical properties of Si nanocrystals embedded in SiO_{2} synthesized by Si ion implantation. *J. Appl. Phys.* 2007, 101, 103525.CrossrefGoogle Scholar

[121]

Chen TP, Liu Y, Tse MS, Tan OK, Ho PF, Liu KY, Gui D, Tan ALK. Dielectric functions of Si nanocrystals embedded in SiO_{2} matrix. *Phys. Rev. B* 2003, 68, 153301.CrossrefGoogle Scholar

[122]

Ding L, Chen TP, Wong JI, Yang M, Liu Y, Ng CY, Liu Y C, Tung CH, Trigg AD, Fung S. Dielectric functions of densely stacked Si nanocrystal layer embedded in SiO_{2} thin films. *Appl. Phys. Lett.* 2006, 89, 251910.CrossrefGoogle Scholar

[123]

Alonso MI, Marcus IC, Garriga M, Goñi AR, Jedrzejewski J, Balberg I. Evidence of quantum confinements effects on interband optical transitions in Si nanocrystals. *Phys. Rev. B* 2010, 82, 045302.CrossrefGoogle Scholar

[124]

Losurdo M, Giangregorio MM, Capezzuto P, Bruno G, Cerquera MF, Alves E, Stepikhova M. Dielectric function of nanocrystalline silicon with few nanometers (<3 nm) grain size. *Appl. Phys. Lett.* 2003, 82, 2993.CrossrefGoogle Scholar

[125]

Keita AS, En Naciri AS, Delachat F, Carrada M, Ferblantier G, Slaoui A. Dielectric function of Si nanoparticles within a silicon nitride matrix. *Phys. Stat. Sol. C* 2010, 7, 418–422.CrossrefGoogle Scholar

[126]

Zhang RJ, Chen YM, lu WJ, Cai QY, Zheng YX, Chen LY. Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO_{2} matrix. *Appl. Phys. Lett.* 2009, 95, 161109.CrossrefGoogle Scholar

[127]

Stenger I, Gallas B, Siozade l, Kao CC, Chenot S, Fisson S, Vuye G, Rivory J. Evolution of the optical properties of Si nanoparticles embedded in SiO_{2} as function of annealing conditions. *J. Appl. Phys.* 2008, 103, 114303.CrossrefGoogle Scholar

[128]

Keita AS, En Naciri A, Delachat F, Carrada M, Ferblantier G, Slaoui A. Ellipsometric demonstration of the existence of a strong correlation between size distribution and optical response of silicon nanoclusters in a nitride matrix. *Appl. Phys. Lett.* 2011, 99, 131903.CrossrefGoogle Scholar

[129]

Keita AS, En Naciri A. Size distribution dependence of the dielectric function of Si quantum dots described by a modified Maxwell-Garnett formulation. *Phys. Rev. B* 2011, 84, 12436.Google Scholar

[130]

En Naciri A, Miska P, Keita AS, Battie Y, Rinnert H, Vergnat M. Optical properties of uniformly sized silicon nanocrystals within a single silicon oxide layer. *J. Nanopart. Res.* 2013, 15, 1538.CrossrefGoogle Scholar

[131]

Kreibig U, Vollmer M. *Optical properties of metal clusters*, Springer-Verlag: Berlin Heidelberg, 1995.Google Scholar

[132]

Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y. Reversing the size-dependence of surface plasmon resonances. *PNAS* 2013, 110, 4212.Google Scholar

[133]

Drachev VP, Chettiar UK, Kildishev AV, Yuan HK, Cai W, Shalaev VM. The Ag dielectric function in plasmonic metamaterials. *Opt. Exp.* 2008, 16, 1186.CrossrefGoogle Scholar

[134]

Losurdo M, Giangregorio MM, Bianco GV, Suvorova AA, Kong C, Rubanoc S, Capezzuto P, Humlicek J, Bruno G. Size dependence of the dielectric function of silicon-supported plasmonic gold nanoparticles. *Phys. Rev. B* 2010, 82, 155451.CrossrefGoogle Scholar

[135]

Nguyen HV, An I, Collins RW. Evolution of the optical functions of thin-film aluminium: a real-time spectroscopic ellipsometry study. *Phys. Rev. B* 1993, 47, 3947.CrossrefGoogle Scholar

[136]

Anno E, Tanimoto M. Size-dependent change in parallel band absorption of Al particles. *Phys. Rev. B* 2001, 64, 165407.CrossrefGoogle Scholar

[137]

Hägglund C, Zeltzer G, Ruiz R, Thomann I, Lee HBR, Brongersma ML, Bent SF. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. *Nano Lett.* 2013, 13, 3352–3357.CrossrefGoogle Scholar

[138]

Sánchez Valencia JR, Toudert J, Borras A, Barranco A, Lahoz R, De la Fuente GF, Frutos F, Gonzalez Elipe AR. Selective dichroic patterning by nanosecond laser treatment of Ag nanostripes. *Adv. Mater.* 2011, 23, 248.Google Scholar

[139]

Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. *Chem. Soc. Rev.* 2011, 40, 2494–2507.CrossrefGoogle Scholar

[140]

Toudert J, Babonneau D, Simonot L, Camelio S, Girardeau T. Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization. *Nanotechnology* 2008, 19, 125709.CrossrefGoogle Scholar

[141]

Mendoza-Galván A, Järrendahl K, Dmitriev A, Pakizeh T, Käll M. Arwin A. Optical response of supported gold nanodisks. *Opt. Exp.* 2011, 19, 12093.CrossrefGoogle Scholar

[142]

Mendoza-Galván A, Järrendahl K, Dmitriev A, Pakizeh T, Käll M, Arwin H. Fano interference in supported nanosandwiches with weakly coupled nanodisks. *Opt. Exp.* 2012, 20, 29646.CrossrefGoogle Scholar

[143]

Pakizeh T, Dmitriev A, Abrishamian MS, Granpayeh N, Käll M. Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. *J. Opt. Soc. Am. B* 2008, 25, 659.CrossrefGoogle Scholar

[144]

Verre R, Fleischer K, Smith C, McAlinden N, McGilp JF, Shvets IV. Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry. *Phys. Rev. B* 2011, 84, 085440.CrossrefGoogle Scholar

[145]

Verre R, Modreanu M, Ualibek O, Fox D, Fleischer K, Smith C Zhang H, Pemble M, McGilp JF, Shvets I V. General approach to the analysis of plasmonic structures using spectroscopic ellipsometry. *Phys. Rev. B* 2013, 87, 235428.CrossrefGoogle Scholar

[146]

Oates TWH, Ranjan M, Facsko S, Arwin H. Highly anisotropic effective dielectric functions of silver nanoparticle arrays. *Opt. Exp.* 2011, 19, 2014.CrossrefGoogle Scholar

[147]

Jen YJ, Lakhtakia A, Yu CW, Lin CT. Vapor-deposited thin films with negative real refractive index in the visible regime. *Opt. Exp.* 2009, 17, 7784.CrossrefGoogle Scholar

[148]

Beydaghyan G, Buzea C, Cui Y, Elliott C, Robbie K. Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films. *Appl. Phys. Lett.* 2005, 87, 153103.CrossrefGoogle Scholar

[149]

Schmidt D, Booso B, Hofmann T, Schubert E, Sarangan A, Schubert M. Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films. *Opt. Lett.* 2009, 34, 992.CrossrefGoogle Scholar

[150]

Schmidt D, Booso B, Hofmann T, Schubert E, Sarangan A, Schubert M. Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry. *Appl. Phys. Lett.* 2009, 94, 011914.CrossrefGoogle Scholar

[151]

Schmidt D, Schubert E, Schubert M. Optical properties of cobalt slanted columnar thin films passivated by atomic layer deposition. *Appl. Phys. Lett.* 2012, 100, 011912.CrossrefGoogle Scholar

[152]

Schmidt D, Schubert M. Anisotropic Bruggeman effective medium approaches for slanted columnar thin films. *J. Appl. Phys.* 2013, 114, 083510.CrossrefGoogle Scholar

[153]

Kasputis T, Koenig M, Schmidt D, Sekora D, Rodenhausen KB, Eichorn KJ, Uhlmann P, Schubert E, Pannier AK, Schubert M, Stamm M. Slanted columnar thin films prepared by glancing angle deposition functionalized with polyacrylic acid polymer brushes. *J. Phys. Chem. C* 2013, 117, 13971–13980.CrossrefGoogle Scholar

[154]

Liang D, Schmidt D, Wang H, Schubert E, Schubert M. Generalized ellipsometry effective medium approximation analysis approach of porous slanted columnar thin films infiltrated with polymer. *Appl. Phys. Lett.* 2013, 103, 111906.CrossrefGoogle Scholar

[155]

May RA, Flaherty DW, Mullins CB, Stevenson KJ. Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the detection of adsorption isotherms on biaxial metal oxide films. *J. Phys. Chem. Lett.* 2010, 1, 1264–1268.CrossrefGoogle Scholar

[156]

Hofmann T, Schmidt D, Boosalis A, Kühne P, Skomski R, Herzinger CM, Woollam, Schubert M, Schubert E. THz dielectric anisotropy of metal slanted colunar thin films. *Appl. Phys. Lett.* 2011, 99, 081903.CrossrefGoogle Scholar

[157]

Schmidt D, Müller C, Hofmann T, Inganäs O, Arwin H, Schubert E, Schubert M. Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer. *Thin Sol. Films* 2011, 519, 2645–2649.Google Scholar

[158]

Gallas B, Robbie K, Abdeddaïm, Guida G, Yang J, Rivory J, Priou A. Silver square nanospirals mimic optical properties of U-shaped metamaterials. *Opt. Exp.* 2010, 18, 16335.CrossrefGoogle Scholar

[159]

Oates TWH, Dastmalchi B, Isic G, Tollabimazraehno S, Helgert C, Pertsch T, Kley EB, Verschuuren MA, Bergmair I, Hingerl K, Ninrichs K. Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials. *Opt. Exp.* 2012, 20, 11166.CrossrefGoogle Scholar

[160]

Menzel C, Rockstuhl C, Paul, T, Lederer F, Pertsch T. Retrieving effective parameters for metamaterials at oblique incidence. *Phys. Rev. B* 2008, 77, 195328.CrossrefGoogle Scholar

[161]

Menzel C, Paul T, Rockstuhl C, Pertsch T, Tretyakov S, Lederer F. Validity of effective material parameters for optical fishnet metamaterials. *Phys. Rev. B* 2010, 81, 035320.CrossrefGoogle Scholar

[162]

Gompf B, Braun J, Weiss T, Giessen H, Dressel M. Periodic nanostructures: spatial dispersion mimics chirality. *Phys. Rev. Lett.* 2011, 106, 185501.CrossrefGoogle Scholar

[163]

Jakovljevic, Isic G, Vasic B, Oates T W H, Hinrichs K, Bergmair I, Hingerl K, Gajic R. Spectroscopic ellipsometry of split ring resonators at infrared frequencies. *Appl. Phys. Lett.* 2012, 100, 161105.CrossrefGoogle Scholar

[164]

Guth N, Gallas B, Rivory J, Grand J, Ourir A, Guida G, Abdeddaim R, Jouvaud C, de Rosny J. Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion. *Phys: Rev. B* 2012, 85, 115138.CrossrefGoogle Scholar

[165]

Malassis L, Massé P, Tréguer-Delapierre M, Mornet S, Weisbecker P, Kravets V, Grigorenko A, Barois P. Bottom-up fabrication and optical characterization of dense films of metal-atoms made of core-shell plasmonic nanoparticles. *Langmuir* 2013, 29, 1551–1561.CrossrefGoogle Scholar

[166]

Dintinger J, Mühlig S, Rockstuhl C, Scharf T. A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles. *Opt. Mater. Exp.* 2012, 2, 269.CrossrefGoogle Scholar

[167]

Hoffman AJ, Alekseyev L, Howard SS, franz KJ, Wasserman D, Podolskiy VA, Narimanov EE, Sivco DL, Gmachl C. Negative refraction in semiconductor metamaterials. *Nat. Mater.* 2007, 6, 946.CrossrefGoogle Scholar

[168]

Naik GV, Liu J, Kildishev AV, Shalaev VM, Boltasseva A. Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. *PNAS* 2012, 109, 8834–8838.CrossrefGoogle Scholar

[169]

Arwin H. Is ellipsometry suitable for sensor applications? *Sens. Act. A* 2001, 92, 43.CrossrefGoogle Scholar

[170]

Nooke A, Beck U, Hertwig A, Krause A, Krüger H, Lohse V, Negendank D, Steinbach J. Ellipsometric detection of gases with the surface plasmon resonance effect on gold top-coated with sensitive layers. *Thin Sol. Films* 2011, 519, 2659–2663.Google Scholar

[171]

Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. *Nano Lett.* 2012, 12, 1655–1659.CrossrefGoogle Scholar

[172]

Chen S, Li G, Wong W, Pun EYB, Cheah KW. Sharp plasmonic resonance on gold gratings in amplitude and phase domains. *Appl. Opt.* 2012, 51, 8563.CrossrefGoogle Scholar

[173]

Kravets VG, Schedin F, Kabashin AV, Grigorenko AN. Sensitivity of collective plasmon modes of gold nanoresonators to local environment. *Opt. Lett.* 2010, 35, 956.CrossrefGoogle Scholar

[174]

Kravets VG, Schedin F, Jalil R, Britnell L, Gorbachev RV, Ansell D, Thackray, Novoselov KS, Geim AK, Kabashin AV, Grigorenko AN. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. *Nat. Mater.* 2013, 12, 304.CrossrefGoogle Scholar

[175]

Malassis L, Massé P, Tréguer-Delapierre M, Mornet S, Weisbecker P, Barois P, Simovski CR, Kravets VG, Grigorenko AN. Topological darkness in self-assembled plasmonic metamaterials. *Adv. Mater.* 2013, 26, 324.Google Scholar

[176]

Aas LMS, Kildemo M, Cohin Y, Sondergard E. Determination of small tilt angles of short GaSb nanopillars using UV-visible Mueller matrix ellipsometry. *Thin Sol. Films* 2013, 541, 97–101.Google Scholar

[177]

Foldyna M, Germer TA, Bergner BC, Dixson RG. Generalized ellipsometry of artificially designed line width roughness. *Thin Sol. Films* 2011, 519, 2633–2636.Google Scholar

[178]

Patrick HJ, Germer TA, Ding Y, Ro HW, Richter LJ, Soles CL. In situ measurement of annealing-induced line shape evolution in nanoimprinted polymers using scatterometry. *Proc. SPIE* 2009, 7271, 727128.Google Scholar

[179]

Stabo-Eeg F, Kildemo M, Nerbo IS, Lindgren M. Well-conditioned multiple laser Mueller matrix ellipsometer. *Opt. Eng.* 2008, 47, 073604.CrossrefGoogle Scholar

[180]

Hoydalsvik K, Aas LMS, Doli E, Sondergard E, Kildemo M, Breiby DW. Combining surface X-ray scattering and ellipsometry for non-destructive characterization of ion-beam induced GaSb surface nanostructures. *Thin Sol. Films*, 2013, in press. Available online 29 October 2013.Google Scholar

[181]

Cheung KT, Foo Y, To CH, Zapien JA. Towards FDTD modeling of spectroscopic ellipsometry data at large angles of incidence. *Appl. Surf. Sci.* 2013, 281, 2–7.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.