[1]
Bednortz JG, Müller KA. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 1986, 64, 189–193.Google Scholar
[2]
Wu MK, Ashbum JR, Tomg CJ, Hot PH, Meng RL, Gao L, Huang ZI, Wang YQ, Chu CW. Superconductivity at 93 K in a new mixed phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987, 58, 908–910.CrossrefGoogle Scholar
[3]
Maeda H, Tanaka Y, Fukutomi M, Asano T. A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 1988, 27, L209–L210.Google Scholar
[4]
Sheng ZZ, Hermann AM. Bulk superconductivity at 120 K in the Tl-Ca/Ba-Cu-O system. Nature 1988, 332, 138–139.Google Scholar
[5]
Cava RJ, Batlogg B, Krajewski JJ, Rupp LW, Schneemeyer LF, Siegrist T, Van Dover RB, Marsh P, Peck WF Jr, Gallagher PK, Glarum SH, Marshall JH, Farrow RC, Waszczac JV, Hull R, Trevor P. Superconductivity near 70 K in a new family of layered copper oxides. Nature 1988, 336, 211–214.Google Scholar
[6]
Chu CW, Gao L, Chen F, Huang ZJ, Meng RL, Xue YY. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures. Nature 1993, 365, 323–325.Google Scholar
[7]
Hiraga K, Shindo D, Hirabayashi M, Kikuchi M, Oh-ishi K, Syono Y. Direct observation of atomic arrangement of high-Tc superconductor YBa2Cu3O6.74 by high-resolution electron microscopy. Jpn. J. Appl. Phys. 1987, 26, L1071–L1073.Google Scholar
[8]
Hiraga K, Hirabayashi M, Kikuchi M, Syono Y. High-resolution electron microscopy of the high-Tc superconductor Bi-Sr-Ca-Cu-O. Jpn. J. Appl. Phys. 1988, 27, L573–L576.Google Scholar
[9]
Hiraga K, Oku T, Shindo D, Hirabayashi M. High-resolution electron microscopy study on crystal structures of high-Tc superconductors. J. Electron. Micros. Technique 1989, 12, 228–243.CrossrefGoogle Scholar
[10]
Hiraga K, Shindo D, Hirabayashi M, Kikuchi M, Kobayashi N, Syono Y. Crystal structures of Tl-Ba-Ca-Cu-O superconducting phases studied by high-resolution electron microscopy. Jpn. J. Appl. Phys. 1988, 27, L1848–L1851.Google Scholar
[11]
Oku T, Shindo D, Nakajima S, Tokiwa A, Kikuchi M, Syono Y, Hiraga K. High-resolution electron microscopy of Tl- and Pb-based superconductors. In Studies of High Temperature Superconductors, Nova Science Pub. 1995, 15, 103–144.Google Scholar
[12]
Oku T. Direct analysis of atomic structures of advanced ceramics by high-resolution electron microscopy. J. Ceram. Soc. Jpn. 2001, 109, S17–S24.CrossrefGoogle Scholar
[13]
Oku T. High-resolution electron microscopy of nanostructured materials. Nanoscience & Nanotechnology-Asia 2011, 1, 59–75.Google Scholar
[14]
Oku T. Direct structure analysis of advanced nanomaterials by high-resolution electron microscopy. Nanotechnology Reviews 2012, 1, 389–425.Google Scholar
[15]
Nakajima S, Kikuchi M, Syono Y, Oku T, Shindo D, Hiraga K, Kobayashi N, Iwasaki H, Muto Y. Synthesis of bulk high Tc superconductors of TlBa2Can-1CunO2n+3 (n=2-5). Physica C 1989, 158, 471–476.Google Scholar
[16]
Liang JK, Zhang YL, Huang JQ, Xie SS, Che GC, Chen XR, Ni YM, Zhen DN, Jia SL. Crystal structures and superconductivity of superconducting phases in Tl-Ba-Ca-O system. Physica C 1988, 156, 616–624.Google Scholar
[17]
Kikuchi M, Kobayashi N, Iwasaki H, Shindo D, Oku T, Tokiwa A, Kajitani T, Hiraga K, Syono Y, Muto Y. Synthesis and superconductivity of a new high-Tc Tl-Ba-Ca-Cu-O phase. Jpn. J. Appl. Phys. 1988, 27, L1050–L1053.Google Scholar
[18]
Nakajima S, Kikuchi M, Oku T, Kobayashi N, Suzuki T, Nagase K, Hiraga K, Muto Y, Syono Y. Over-doping of Tl2Ba2CuO6 due to charge transfer Tl3-t(Cu-O)P. Physica C 1989, 160, 458–460.Google Scholar
[19]
Syono Y, Kikuchi M, Nakajima S, Suzuki T, Oku T, Hiraga K, Kobayashi N, Iwasaki H, Muto Y. Structure, composition and superconductivity of high Tc Tl-Ba-Ca-Cu-O system. Mater. Res. Soc. Symp. Proc. 1989, 156, 229–238.Google Scholar
[20]
Kikuchi M, Syono Y, Kobayashi N, Oku T, Aoyagi E, Hiraga K, Kusaba K, Atou T, Tokiwa A, Fukuoka K. Shock-induced superconductivity of Tl2Ba2CuO6. Appl. Phys. Lett. 1990, 57, 813–815.CrossrefGoogle Scholar
[21]
Nakajima S, Kikuchi M, Syono Y, Oku T, Nagase K, Kobayashi N, Shindo D, Hiraga K. Iodimetric determination of oxygen contents of the Tl single layer system and their relevance to superconductivity. Physica C 1991, 182, 89–94.Google Scholar
[22]
Nakajima S, Kikuchi M, Syono Y, Nagase K, Oku T, Kobayashi N, Shindo D, Hiraga K. Improvement in superconductivity of TlBa2CaCu2Oy system by introduction of oxygen loss. Physica C 1990, 170, 443–447.Google Scholar
[23]
Shindo D, Oku T, Kudoh J, Oikawa T. Quantitative high-resolution electron microscopy of a high-Tc superconductor Tl2Ba2CuO6 with the imaging plate. Ultramicroscopy 1994, 54, 221–228.CrossrefGoogle Scholar
[24]
Hovmöller S, Sjögren A, Farrants G, Sundberg M, Marinder BO. Accurate atomic positions from electron microscopy. Nature 1984, 311, 238–241.Google Scholar
[25]
Weirich TE, Ramlau R, Simon A, Hovmöller S, Zou XD. A crystal structure determined to 0.02 Å accuracy by electron microscopy. Nature 1996, 382, 144–146.Google Scholar
[26]
Kikuchi M, Nakajima S, Syono Y, Hiraga K, Oku T, Shindo D, Kobayashi N, Iwasaki H, Muto Y. Preparation of the bulk superconductor Tl2Ba2Ca3Cu4O12. Physica C 1989, 158, 79–82.Google Scholar
[27]
Herview M, Maigan A, Martin C, Michel C, Provost J, Rabeau B. A new member of the thallium superconductive series, the “1212” oxide TlBa2CaCu2O8-y: importance of oxygen content. J. Solid State Chem. 1988, 75, 212–215.Google Scholar
[28]
Torardi CC, Subramanian MA, Calabrese JC, Gopalakrishnan I, McCarron EM, Morrissey KJ, Askew TR, Flippen RB, Chowdhry U, Sleight AW. Structures of superconducting oxides Tl2Ba2CuO6 and Bi2Sr2CuO6. Phys. Rev. B 1988, 38, 225–231.CrossrefGoogle Scholar
[29]
Kikuchi M, Kajitani T, Suzuki T, Nakajima S, Hiraga K, Kobayashi N, Iwasaki H, Syono Y, Muto Y. Preparation and chemical composition of superconducting oxide Tl2Ba2Can-1CuO2n+4. Jpn. J. Appl. Phys. 1989, 28, L382–L385.Google Scholar
[30]
Nakajima S, Oku T, Suzuki R, Kikuchi M, Hiraga K, Syono Y. Chemical characterization and superconductivity of Tl2Ba2-xLaxCuOy with the orthorhombic and tetragonal structures. Physica C 1993, 214, 80–86.Google Scholar
[31]
Kikuchi M, Ohshima E, Ohnishi N, Muraoka Y, Nakajima S, Aoyagi E, Ogawa M, Akimitsu J, Oku T, Hiraga K, Syono Y. Synthesis and superconductivity of oxycarbonates of the Tl-1201 phase. Physica C 1994, 219, 200–204.Google Scholar
[32]
Ohshima E, Kikuchi M, Izumi F, Hiraga K, Oku T, Nakajima S, Ohnishi N, Morii Y, Funahashi S, Syono Y. Structure analysis of oxygen-deficient TlSr2CuOy by neutron diffraction and high-resolution electron microscopy. Physica C 1994, 221, 261–268.Google Scholar
[33]
Kunii Y, Suzuki T, Kakishima A, Goto T. Nakajima S, Fukase T. Tl, Cu-NMR study on high-Tc cuprate TlBa2Y1-xCaxCu2O7. Physica C 2003, 388–389, 257–258.Google Scholar
[34]
Yahya AK, Abdullah WF, Imad H, Jumali MH. Changes in doping state of (Tl, Pb)Sr1212 superconductors with Yb substitution at Sr site. Physica C 2007, 463–465, 474–477.Google Scholar
[35]
Zandbergen HW, Groen WA, Mijelhoff FC, Van Tendeloo G, Amelinckx S. Models for the modulation in A2B2CanCu1+nO6+2n, A, B=Bi, Sr or Tl, Ba and n=0, 1, 2. Physica C 1988, 156, 325–354.Google Scholar
[36]
Dmowksi W, Toby BH, Egami T, Subramanian MA, Gopalakrishnan J, Sleight AW. Short-range ordering due to displacements of thallium and oxygen atoms in superconducting Tl2Ba2CaCu2O8 observed by pulsed-neutron scattering. Phys. Rev. Lett. 1988, 61, 2608–2611.CrossrefGoogle Scholar
[37]
Iijima S, Ichihashi T, Shimakaya Y, Manako T, Kubo Y. Modulated structures in superconductor Tl-Ba-Ca-Cu-O oxides: crystal structure of Tl2Ba2CuO6+x phase. Jpn. J. Appl. Phys. 1988, 27, L1061–L1064.Google Scholar
[38]
Zandbergen HW, Van Tendeloo G, Van Landuty J, Amelinckx S. The structure and defect structure of high-Tc superconducting materials in the system Tl-Ba-Ca-Cu-O. Appl. Phys. A 1988, 46, 233–239.CrossrefGoogle Scholar
[39]
Parkin SSP, Lee VY, Nazzal AI, Savoy R, Huang TC, Gorman G, Beyers R. Model family of high-temperature superconductors: TlmCan-1Ba2CunO2(n+1)+m (m=1,2; n=1,2,3). Phys. Rev. B 1988, 38, 6531–6537.CrossrefGoogle Scholar
[40]
Hewat EA, Bordet P, Capponi JJ, Chaillout C, Chenavas J, Godinho M, Hewat AW, Hodeau JL, Marezio M. Electron microscopy of superconducting “tetragonal” and non-superconducting orthorhombic Tl2Ba2Cu1O6. Physica C 1988, 156, 375–381.Google Scholar
[41]
Hewat AW, Hewat EA, Brynestad J, Mook HA, Specht ED. Structure and superstructure of the superconductor Tl2Ca1Ba2Cu2O8 by neutron and electron diffraction. Physica C 1988, 152, 438–444.Google Scholar
[42]
Oku T, Hiraga K, Shindo D, Kikuchi M, Nakajima S, Syono Y. High-resolution electron microscopy of Tl-Ba-Ca-Cu-O superconductors. Advances in Superconductivity 1991, 3, 367–370.Google Scholar
[43]
Tokiwa A, Oku T, Nagoshi M, Kikuchi M, Hiraga K, Syono Y. Crystal structure and phase transition of PbBaSrYCu3Oy(y=7–8.4). Physica C 1989, 161, 459–467.Google Scholar
[44]
Tokiwa A, Nagoshi M, Oku T, Kobayashi N, Kikuchi M, Hiraga K, Syono Y. Synthesis and superconductivity of PbBaSrY1-xCaxCu3O7. Physica C 1990, 168, 285–290.Google Scholar
[45]
Tokiwa A, Oku T, Nagoshi M, Shindo D, Kikuchi M, Oikawa T, Hiraga K, Syono Y. Synthesis and crystal structure of Pb(Ba,Sr)2(Ln,Ce)2Cu3Oy (Ln: Lanthanoid, y=9–10.4), a new member of the Pb system. Physica C 1990, 172, 155–165.Google Scholar
[46]
Masuzawa M, Noji T, Koike Y, Saito Y. Preparation of the high-Tc superconductor Pb2Sr2Y0.5Ca0.5Cu3O8+δ with zero resistance at 75 K. Jpn. J. Appl. Phys. 1989, 28, L1524–L1526.Google Scholar
[47]
Tokiwa-Yamamoto A, Izumi F, Oku T, Syono Y. Disordering of Pb and Cu arrangements in the block layers of Pb2Sr2YCu3O8+δ and PbBaSrYCu3O8+δ by oxygen introduction. Physica C 1993, 215, 243–252.Google Scholar
[48]
Tokiwa A, Oku T, Nagoshi M, Syono Y. Synthesis and crystal structure of Pb2Sr2(Ln,Ce)nCu3O6+2n+δ and Pb(Ba,Sr)2(Ln,Ce)nCu3O5+2n+δ (Ln=Y, n=3, 4, … and 0 ≤ δ ≤ 2.0), layered structure compounds with multiple fluorite layers. Physica C 1991, 181, 311–319.Google Scholar
[49]
Tamura T, Adachi S, Wu XJ, Tatsuki T, Tanabe K. Pb-1223 cuprate superconductor with Tc above 120 K synthesized under high pressure. Physica C 1997, 277, 1–6.Google Scholar
[50]
Wu XJ, Tamura T, Adachi S, Tatsuki T, Tanabe K. Crystal structure of ‘Pb’-1234 superconductor. Physica C 1998, 299, 249–255.Google Scholar
[51]
Karimoto S, Naito M. New superconducting lead cuprates prepared by molecular beam epitaxy. Physica C 2000, 338, 92–95.Google Scholar
[52]
Sasakura H, Akagi Y, Tsukui S, Adachi M. Superconductivity in the Pb-based 1222 cuprate containing boron, (Pb0.5B0.5)Sr2(Y1.9-xCexSr0.1)Cu2Oz. J. Supercond. Nov. Magn. 2009, 22, 755–758.Google Scholar
[53]
Sasakura H, Akagi Y, Tanaka M, Tsukui S, Adachi M. Superconductivity in new Pb-based 1222 layered cuprates of (Pb0.75W0.25)Sr2(Eu2.0-xCex)Cu2Oz. J. Supercond. Nov. Magn. 2014, 27, 5–8.Google Scholar
[54]
Grigoraviciute I, Yamauchi H, Karppinen M. Layer-engineering of high-Tc superconductors: (Cu,Mo)Sr2(Ce,Y)4Cu2O13+δ with a quadruple-fluorite-layer block between CuO2 planes. J. Am. Chem. Soc. 2007, 129, 2593–2596.Google Scholar
[55]
Chmaissem O, Grigoraviciute I, Yamauchi H, Karppinen M, Marezio M. Superconductivity and oxygen ordering correlations in the homologous series of (Cu,Mo)Sr2(Ce,Y)sCu2O5+2s+δ. Phys. Rev. B 2010, 82, 104507-1-9.CrossrefGoogle Scholar
[56]
Akimitsu J, Suzuki S, Watanabe M, Sawa H. Superconductivity in the Nd-Sr-Ce-Cu-O system. Jpn. J. Appl. Rhys. 1988, 27, L1859–L1860.Google Scholar
[57]
Takayama-Muromachi E, Matsui Y, Uchida Y, Izumi F, Onoda M, Kato K. Identification of the superconducting phase in the Nd-Ce-Sr-Cu-O System. Jpn. J. Appl. Phys. 1988, 27, L2283–L2286.Google Scholar
[58]
Varela A, Vallet-Regí M, González-Calbet JM. Phase identification and superconductivity transitions in Sr-doped Pr1.85Ce0.15CuO4+δ. J. Mater. Res. 1997, 12, 2526.Google Scholar
[59]
Tokura Y, Takagi H, Uchida S. A superconducting copper oxide compound with electrons as the charge carriers. Nature 1989, 337, 345–347.Google Scholar
[60]
Takagi H, Uchida S, Tokura Y. Superconductivity produced by electron doping in CuO2-layered compounds. Phys. Rev. Lett. 1989, 62, 1197–1200.CrossrefGoogle Scholar
[61]
Izumi F, Matsui Y, Takagi H, Uchida S, Tokura Y, Asano H. Neutron and electron diffraction study of the electron-doped superconductor Nd1.845Ce0.155CuO4-y. Physica C 1989, 158, 433–439.Google Scholar
[62]
Oku T, Kajitani T, Hiraga K, Hosoya S, Shindo D. High-resolution electron microscopy of Ln2CuO4 (Ln=Pr,Nd,Sm). Physica C 1991, 185–189, 547–548.Google Scholar
[63]
Kajitani T, Hiraga K, Hosoya S, Fukuda T, Oh-Ishi K, Kikuchi M, Syono Y, Tomiyoshi S, Takahashi M, Muto Y. Electric and structural changes in Nd2-xCexCuO4-y with x ≤ 0.2. Physica C 1990, 169, 227–236.Google Scholar
[64]
Tokura Y, Takagi H, Watabe H, Matsubara H, Uchida S, Hiraga K, Oku T, Mochiku T, Asano H. New family of layered copper oxide compounds with ordered cations: prospective high-temperature superconductors. Phys. Rev. B 1989, 40, 2568–2571.CrossrefGoogle Scholar
[65]
Chen CH, Werder DJ, James ACWP, Murphy DW, Zahurak S, Fleming RM, Batlogg B, Schneemeyer LF. Superlattice modulation and superconductivity in the electron-doped Nd2CuO4-xFx and Nd2-xCexCuO4 systems. Physica C 1989, 160, 375–380.Google Scholar
[66]
Williams T, Maeno Y, Mangelschots I, Reller A, Bednorz G. Oxygen vacancy ordering in superconducting Nd2-xCexCuO4-y. Physica C 1989, 161, 331–334.Google Scholar
[67]
Li DJ, Zhang JP, Marks LD. Superconductors and nonsuperconductors in Nd2-xCexCuO4. Physica C 1990, 168, 617–626.Google Scholar
[68]
Van Aken PA, Muller WF. Superstructure formation in the electron-doped superconducting system Nd2-xCexCuO4-δ: a transmission electron microscopical study. Physica C 1991, 174, 63–70.Google Scholar
[69]
Paturi P, Irjala M, Huhtinen H. Greatly decreased critical current density anisotropy in YBa2Cu3O6+x thin films ablated from nanocrystalline and BaZrO3-doped nanocrystalline targets. J. Appl. Phys. 2008, 103, 123907-1-10.CrossrefGoogle Scholar
[70]
Ito A, Tu R, Goto T, Zhao P. Fast epitaxial growth of a-axis- and c-axis-oriented YBa2Cu3O7-δ films on (100) LaAlO3 substrate by laser chemical vapor deposition. Appl. Surf. Sci. 2011, 257, 4317–4320.Google Scholar
[71]
Mikheenko P, Dang VS, Kechik MMA, Sarkar A, Paturi P, Huhtinen H, Abell JS, Crisan A. Synergetic pinning centers in YBa2Cu3Ox films through a combination of Ag nano-dot substrate decoration, Ag/YBCO quasi-multilayers and the use of BaZrO3-doped target. IEEE Trans. Appl. Supercond. 2011, 21, 3184–3188.CrossrefGoogle Scholar
[72]
Palonen H, Huhtinen H, Shakhov MA, Paturi P. Electron mass anisotropy of BaZrO3 doped YBCO thin films in pulsed magnetic fields up to 30 T. Supercond. Sci. Technol. 2013, 26, 045003-1-5.CrossrefGoogle Scholar
[73]
Zhao P, Ito A, Kato T, Yokoe D, Hirayama T, Goto T. High-speed growth of YBa2Cu3O7-δ superconducting films on multilayer-coated Hastelloy C276 tape by laser-assisted MOCVD. Supercond. Sci. Technol. 2013, 26, 055020-1-8.CrossrefGoogle Scholar
[74]
Yamane H, Masumoto H, Hirai T, Iwasaki H, Watanabe K, Kobayashi N, Muto Y, Kurosawa H. Y-Ba-Cu-O superconducting films prepared on SrTiO3 substrates by chemical vapor deposition. Appl. Phys. Lett. 1988, 53, 1548–1550.CrossrefGoogle Scholar
[75]
Yamane H, Kurosawa H, Hirai T, Watanabe K, Iwasaki H, Kobayashi N, Muto Y. High critical-current density of Y-Ba-Cu-O superconducting films prepared by CVD. Supercond. Sci. Technol. 1989, 2, 115–117.CrossrefGoogle Scholar
[76]
Yamane H, Takagi S, Oku T, Ohnishi N, Hiraga K, Awaji S, Watanabe K, Kobayashi N, Hirai T. Crystallographic relationship between Y2Cu2O5 and 123-phase in chemical vapour deposited Y-Ba-Cu-O superconducting films. J. Mater. Sci. Lett. 1993, 12, 1430–1433.CrossrefGoogle Scholar
[77]
Osamura K, Kizu T, Oku T. Critical current density in YBa2Cu3O6+x added with perovskite type impurity. Physica C 1994, 226, 113–120.Google Scholar
[78]
Matsushita T, Otabe ES, Ni B, Kimura K, Morita M, Tanaka M, Kimura M, Miyamoto K, Sawano K. Critical current characteristics in superconducting Y-Ba-Cu-O prepared by the melt process. Jpn. J. Appl. Phys. 1991, 30, L342–L345.Google Scholar
[79]
Watanabe K, Matsushita T, Kobayashi N, Kawabe H, Aoyagi E, Hiraga K, Yamane H, Kurosawa H, Hirai T, Muto Y. Strong flux pinning centers in Y-Ba-Cu-O films prepared by chemical vapor deposition. Appl. Phys. Lett. 1990, 56, 1490–1492.CrossrefGoogle Scholar
[80]
Osamura K, Matsukura N, Kusumoto Y, Ochiai S, Ni B, Matsushita T. Improvement of critical current density in YBa2Cu3O6+x superconductor by Sn addition. Jpn. J. Appl. Phys. 1990, 29, L1621–L1623.Google Scholar
[81]
Oka T, Itoh Y, Yanagi Y, Tanaka H. Takashima S, Yamada Y, Mizutani U. Critical current density and mechanical strength of YBa2Cu3O7-δ superconducting composites containing Zr, Ag and Y2BaCuO5 dispersions by melt-processing. Physica C 1992, 200, 55–64.Google Scholar
[82]
Civale L, Marwick AD, Worthington TK, Kirk MA, Thompson JR, Krusin-Elbaum L, Sun Y, Clem JR, Holtzberg F. Vortex confinement by columnar defects in YBa2Cu3O7 crystals: enhanced pinning at high fields and temperatures. Phys. Rev. Lett. 1991, 67, 648–651.CrossrefGoogle Scholar
[83]
Gutiérrez J, Llordés A, Gázquez J, Gibert M, Romà N, Ricart S, Pomar A, Sandiumenge F, Mestres N, Puig T, Obradors X. Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films. Nat. Mater. 2007, 6, 367–373.CrossrefGoogle Scholar
[84]
Maiorov B, Baily SA, Zhou H, Ugurlu O, Kennison JA, Dowden PC, Holesinger TG, Foltyn SR, Civale L. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nat. Mater. 2009, 8, 398–404.CrossrefGoogle Scholar
[85]
MacManus-Driscoll JL. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 2010, 20, 2035–2045.CrossrefGoogle Scholar
[86]
Miura M, Maiorov B, Baily SA, Haberkorn N, Willis JO, Marken K, Izumi T, Shiohara Y, Civale L. Mixed pinning landscape in nanoparticle-introduced YGdBa2Cu3Oy films grown by metal organic deposition. Phys. Rev. B 2011, 83, 184519-1-8.CrossrefGoogle Scholar
[87]
Koshelev AE, Kolton AB. Theory and simulations on strong pinning of vortex lines by nanoparticles. Phys. Rev. B 2011, 84, 104528-1-13.CrossrefGoogle Scholar
[88]
Eatough MO, Ginley DS, Morosin B, Venturini EL. Orthorhombic-tetragonal phase transition in high-temperature superconductor YBa2Cu3O7. Appl. Phys. Lett. 1987, 51, 367–368.CrossrefGoogle Scholar
[89]
Kajitani T, Oh-ishi K, Kikuchi M, Syono Y, Hirabayashi M. Neutron diffraction study on orthorhombic YBa2Cu3O6.74 and tetragonal YBa2Cu3O6.05. Jpn. J. Appl. Phys. 1987, 26, L1144–L1147.Google Scholar
[90]
Beyers R, Ahn BT, Gorman G, Lee VY, Parkin SSP, Ramirez ML, Roche KP, Vazquez JE, Gür TM, Huggins RA. Oxygen ordering, phase separation and the 60-K and 90-K plateaus in YBa2Cu3Ox. Nature 1989, 340, 619–621.Google Scholar
[91]
de Fontaine D, Ceder G, Asta M. Low-temperature long-range oxygen order in YBa2Cu3Oz. Nature 1990, 343, 544–546.Google Scholar
[92]
Plakhty V, Stratilatov A, Chernenkov Y, Federov V, Sinha SK, Loong CK, Gaulin B, Vlasov M, Moshkin S. X-ray studies of the YBa2Cu3O6+x superstructures in the range of 0.40(3) ≤ x ≤ 0.73(3). Solid State Commun. 1992, 84, 639–644.Google Scholar
[93]
Stratilatov A, Plakhty V, Chernenkov Y, Fedorov V. The structure of the ortho-III phase of YBa2Cu3O6+x by X-ray scattering. Phys. Lett. A 1993, 180, 137–140.Google Scholar
[94]
de Fontaine D, Ceder G, Asta M, Iliev M, Thomsen C, Hadjiev V. Cardona M. Resonant Raman scattering of oxygen-deficient YBa2Cu3O7-δ: evidence for the coexistence of ortho-I, ortho-II, and tetragonal microstructures. Phys. Rev. B 1993, 47, 12341–12344.Google Scholar
[95]
Schleger P, Casalta H, Hadfield R, Poulsen HF, von Zimmermann M, Andersen NH, Schneider JR, Liang R, Dosanjh P, Hardy WN. Observation of ortho-III correlations by neutron and hard X-ray scattering in an untwinned YBa2Cu3O6.77 single crystal. Physica C 1995, 241, 103–110.Google Scholar
[96]
Manca P, Sanna S, Calestani G, Migliori A, Lapinskas S, Tornau EE. Orthorhombic low-temperature superstructures in YBa2Cu3O6+x. Phys. Rev. B 2001, 63, 134512-1-7.CrossrefGoogle Scholar
[97]
Wille LT, Berera A, de Fontaine D. Thermodynamics of oxygen ordering in YBa2Cu3Oz. Phys. Rev. Lett. 1988, 60, 1065–1068.CrossrefGoogle Scholar
[98]
Yasuoka H, Shimizu T, Imai T, Sasaki S, Ueda Y, Kosuge K. NMR and NQR studies in high-Tc oxides: YBa2Cu3Oy (6.0≤y≤6.91). Hyperfine Interactions 1989, 49, 167–186.CrossrefGoogle Scholar
[99]
Yoshinari Y, Yasuoka H, Ueda Y, Koga K, Kosuge K. NMR Studies of 17O in the normal state of YBa2Cu3O6+x. J. Phys. Soc. Jpn. 1990, 59, 3698–3711.CrossrefGoogle Scholar
[100]
Gömöry F, Šouc J, Fabbricatore P, Farinon S, Strýček F, Kováč P, Hušek I. Magnetic hysteresis loss in Bi-2223/Ag tapes with different filament arrangement. Physica C 2002, 371, 229–236.Google Scholar
[101]
Gencer A, Aksu E, Özoğul Ö, Yakıncı ME. AC susceptibility study of a multi-filamentary Bi-2212/Ag superconducting tape. Physica C 2006, 445–448, 772–776.Google Scholar
[102]
Ochiai S, Fujimoto M, Shin JK, Okuda H, Oh SS, Ha DW. Distribution of normalized critical current of bent multifilamentary Bi2223 composite tape. J. Appl. Phys. 2009, 106, 103916-1-11.Google Scholar
[103]
Bruneel E, Oku T, Degrieck J, Van Driessche I, Hoste S. Structural and mechanical properties of particulate, whisker and unidirectional Bi-2223 Ag composites. Key Eng. Mater. 2002, 206, 637–640.Google Scholar
[104]
Bruneel E, Oku T, Penneman G, Van Driessche I, Hoste S. TEM study on the alignation of BSCCO-2223 phase along Ag-whiskers in a bulk composite. Key Eng. Mater. 2002, 206, 1473–1476.Google Scholar
[105]
Bruneel E, Oku T, Penneman G, Van Driessche I, Hoste S. Origin of the nanocrystalline interface in superconducting Bi-2223/Ag composites: a SEM/HREM study. Supercond. Sci. Technol. 2004, 17, 750–755.CrossrefGoogle Scholar
[106]
Shindo D, Hiraga K, Hirabayashi M, Kikuchi M, Syono Y. Structure analysis of high-Tc superconductor Bi-Ca-Sr-Cu-O by processing of high-resolution electron microscope images. Jpn. J. Appl. Phys. 1988, 27, L1018–L1021.Google Scholar
[107]
Ikeda S, Aota K, Hatano T, Ogawa K. A new mode of modulation observed in the Bi-Pb-Sr-Ca-Cu-O system. Jpn. J. Appl. Phys. 1988, 27, L2040–L2043.Google Scholar
[108]
Matsui Y, Horiuchi S. Geometrical relations of various modulated structures in Bi-Sr-Ca-Cu-O superconductors and related compounds. Jpn. J. Appl. Phys. 1988, 27, L2306–L2309.Google Scholar
[109]
Hirotsu Y, Tomioka O, Ohkubo T, Yamamoto N, Nakamura Y, Nagakura S, Komatsu T, Matsushita K. Modulated structure of high-Tc superconductor Bi-Ca-Sr-Cu-O studied by high-resolution electron microscopy and electron diffraction. Jpn. J. Appl. Phys. 1988, 27, L1869–L1872.Google Scholar
[110]
Eibl O. Crystal structure of (Bi, Pb)2Sr2Can-1CunO4+2n+δ high-Tc superconductors. Physica C 1990, 168, 215–238.Google Scholar
[111]
Eibl O. Displacive modulation and chemical composition of (Bi, Pb)2Sr2Can-1CunO2n+4 (n=2, 3) high-Tc superconductors. Physica C 1991, 175, 419–434.Google Scholar
[112]
Xianhui C, Yitai Q, Zuyao C, Chun L, Li Y, Ziqiang M, Yuheng Z. Origin of a Bi-type modulated structure and its effects on superconductivity in Bi1.8Pb0.35Sr2Ca2Cu3Oy: direct experimental observation. Phys. Rev. B, 1992, 46, 9181–9185.Google Scholar
[113]
Kaneko S, Akiyama K, Ito T, Shimizu Y, Hirabayashi Y, Ohya S, Funakubo H, Yoshimoto M. Structural modulation in bismuth cuprate superconducting film with continuous epitaxial growth. J. Cryst. Growth 2008, 310, 1713–1717.Google Scholar
[114]
Kaneko S, Akiyama K, Ito T, Hirabayashi Y, Funakubo H, Yoshimoto M. Supercell structure on continuous growth of Bi2Sr2Ca1Cu2Ox film. Jpn. J. Appl. Phys. 2008, 47, 5602–5604.Google Scholar
[115]
Kováč P, Eastell CJ, Pachla W, Hušek I, Marciniak H, Grovenor CRM, Goringe MJ. Structure and current transport mechanisms in Bi(2223)/Ag tapes. Physica C 1997, 292, 322–338.Google Scholar
[116]
Oku T, Nakajima S. Crystal structure of HgTlBa2CuOx studied by high-resolution electron microscopy. J. Mater. Res. 1998, 13, 1136–1140.CrossrefGoogle Scholar
[117]
Kijima N, Endo H, Tsuchiya J, Sumuyama A, Mizuno M, Oguri Y. Crystal Structure of the High-Tc Phase in the Pb-Bi-Sr-Ca-Cu-O System. Jpn. J. Appl. Phys. 1989, 28, L787–L790.Google Scholar
[118]
Martens JS, Ginley DS, Zipperian TE, Hietala VM, Tigges CP. Novel applications of Tl-Ca-Ba-Cu-O thin films to active and passive high frequency devices. Advances in Superconductivity 1991, 3, 1143–1148.Google Scholar
[119]
Scherbel J, Mans M, Schneidewind H, Kaiser U, Biskupek J, Schmidl F, Seidel P. Texture and electrical dynamics of micrometer and submicrometer bridges in misaligned Tl2Ba2CaCu2O8 films. Phys. Rev. B 2004, 70, 104507-1-10.CrossrefGoogle Scholar
[120]
Mans M, Schneidewind H, Büenfeld M, Schmidl F, Seidel P. Intrinsic Josephson junctions in misaligned Tl2Ba2CaCu2O8-x thin films with different tilt angles. Phys. Rev. B 2006, 74, 214514-1-9.CrossrefGoogle Scholar
[121]
Fenton JC, Korsah M, Grovenor CRM, Warburton PA. Switchable phase diffusion in intrinsic Josephson junction arrays. Physica C 2007, 460–462, 1470–1471.Google Scholar
[122]
Anders S, Blamire MG, Buchholz FI, Crété DG, Cristiano R, Febvre P, Fritzsch L, Herr A, Il’ichev E, Kohlmann J, Kunert J, Meyer HG, Niemeyer J, Ortlepp T, Rogalla H, Schurig T, Siegel M, Stolz R, Tarte E, ter Brake HJM, Toepfer H, Villegier JC, Zagoskin AM, Zorin AB. European roadmap on superconductive electronics – status and perspectives. Physica C 2010, 470, 2079–2126.Google Scholar
[123]
Oku T, Nakajima S. Surface structures of (Hg,Tl)-based oxides studied by high-resolution electron microscopy. Surf. Sci. 1998, 407, L647–L651.Google Scholar
[124]
Oku T, Nakajima S. Oxygen arrangement on Hg0.5Tl0.5Ba2CuOx (100) surface studied by high-resolution electron microscopy. Appl. Phys. Lett. 1999, 75, 2226–2228.Google Scholar
[125]
Larbalestier D, Gurevich A, Feldmann DM, Polyanskii AA. High-Tc superconducting materials for electric power applications. Nature 2001, 414, 368–377.Google Scholar
[126]
Kang S, Goyal A, Li J, Gapud AA, Martin PM, Heatherly L, Thompson JR, Christen DK, List FA, Paranthaman M, Lee DF. High-performance high-Tc superconducting wires. Science 2006, 311, 1911–1914.Google Scholar
[127]
Foltyn SR, Civale L, MacManus-Driscoll JL, Jia QX, Maiorov B, Wang H, Maley M. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 2007, 6, 631–642.CrossrefGoogle Scholar
[128]
Zeljkovic I, Xu Z, Wen J, Gu G, Markiewicz RS, Hoffman JE. Imaging the impact of single oxygen atoms on superconducting Bi2+ySr2-yCaCu2O8+x. Science 2012, 337, 320–323.Google Scholar
[129]
Dal Conte S, Giannetti C, Coslovich G, Cilento F, Bossini D, Abebaw T, Banfi F, Ferrini G, Eisaki H, Greven M, Damascelli A, van der Marel D, Parmigiani F. Disentangling the electronic and phononic glue in a high-Tc superconductor. Science 2012, 335, 1600–1603.Google Scholar
[130]
Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Ishikado M, Fujita K, Ishida S, Uchida S. Relation between the nodal and antinodal gap and critical temperature in superconducting Bi2212. Nat. Commun. 2013, 4, 1815-1-7.Google Scholar
Comments (0)