Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year

IMPACT FACTOR 2017: 1.904
5-year IMPACT FACTOR: 1.945

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.544
Source Normalized Impact per Paper (SNIP) 2017: 0.528

See all formats and pricing
More options …
Volume 4, Issue 2


On the interaction between gold and silver metal atoms and DNA/RNA nucleobases – a comprehensive computational study of ground state properties

Leonardo Andres Espinosa Leal
  • COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga Lopez-Acevedo
  • Corresponding author
  • COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-14 | DOI: https://doi.org/10.1515/ntrev-2012-0047


The interaction between metal atoms and nucleobases has been a topic of high interest due to the wide scientific and technological implications. Combining density functional theory simulations with a literature overview, we achieved an exhaustive study of the ground state electronic properties of DNA/RNA nucleobases interacting with gold and silver atoms at three charge states: neutral, cationic, and anionic. We describe the nature of the stability and electronic properties in each hybrid metallic structure. In addition to the metal interacting with the five isolated nucleobases, we included their respective DNA-WC base pairs and one case with the protonated sugar-phosphate backbone. As a general trend, we discerned that the energetic ordering of isomers follows simple electrostatic rules as expected from previous studies. Also, we found that although the metal localizes almost all of the extra charge in the anionic system, a donation of charge is shared almost equally in the cationic system. Furthermore, the frontier orbitals of the cationic system tend to have more effects from the pairing and inclusion of the backbone than the anionic system. Finally, the electronic gap varies greatly among all of the considered structures and could be further used as a fingerprint when searching DNA-metal hybrid structures.

This article offers supplementary material which is provided at the end of the article.

Keywords: DNA-metals; gold and silver; nucleobases


  • [1]

    Lennard-Jones JE. The electronic structure of some diatomic molecules. Trans. Faraday Soc. 1929, 25, 668–686.CrossrefGoogle Scholar

  • [2]

    Huckel E. Theory of free radicals of organic chemistry. Trans. Faraday Soc. 1934, 30, 40–52.CrossrefGoogle Scholar

  • [3]

    Roothaan CCJ. New developments in molecular orbital theory. Rev. Mod. Phys. 1951, 23, 69–89.CrossrefGoogle Scholar

  • [4]

    Hehre WJ, Stewart RF, Pople JA. Self-consistent molecular-orbital methods. I. use of Gaussian expansions of slater-type atomic orbitals. J. Chem. Phys. 1969, 51, 2657–2664.Google Scholar

  • [5]

    Hehre WJ, Ditchfield R, Stewart RF, Pople JA. Self-consistent molecular orbital methods. IV. Use of Gaussian expansions of slater-type orbitals. Extension to second-row molecules. J. Chem. Phys. 1970, 52, 2769–2773.Google Scholar

  • [6]

    Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728.Google Scholar

  • [7]

    Hehre WJ, Ditchfield R, Pople JA. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261.Google Scholar

  • [8]

    Clementi E, Davis DR. Electronic structure of large molecular systems. J. Comput. Phys. 1966, 1, 223–244.CrossrefGoogle Scholar

  • [9]

    Clementi E, Mehl J, von Niessen W. Study of the electronic structure of molecules. XII. Hydrogen bridges in the guanine-cytosine pair and in the dimeric form of formic acid. J. Chem. Phys. 1971, 54, 508–520.Google Scholar

  • [10]

    Clementi E. Computation of large molecules with the Hartree-Fock model. PNAS 1972, 69, 2942–2944.CrossrefGoogle Scholar

  • [11]

    Møller C, Plesset MS. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618–622.CrossrefGoogle Scholar

  • [12]

    Sagarik KP, Rode BM. The influence of small monovalent cations on the hydrogen bonds of base pairs of DNA. Inorg. Chim. Acta. 1983, 78, 81–86.CrossrefGoogle Scholar

  • [13]

    Sagarik KP, Rode BM. The influence of Mg2+ ion on the hydrogen bonds of the adenine···thymine base pair. Inorg. Chim. Acta. 1983, 78, 177–180.CrossrefGoogle Scholar

  • [14]

    Sagarik KP, Rode BM. Quantum chemical investigations on group IA and IIA metal ion–DNA base complexes. Inorg. Chim. Acta. 1983, 76, L209–L212.CrossrefGoogle Scholar

  • [15]

    Del Bene JE. Molecular orbital study of the lithium(1+) complexes of the DNA bases. J. Phys. Chem. 1984, 88, 5927–5931.Google Scholar

  • [16]

    Del Bene JE. Molecular orbital theory of the hydrogen bond: XXXII. The effect of H+ and Li+ association on the A···T and G···C pairs. J. Mol. Struct.: THEOCHEM. 1985, 124, 201–212.Google Scholar

  • [17]

    Hobza P, Sandorfy C. Perturbation of hydrogen bonds in the adenine···thymine base pair by Na+, Mg2+, Ca+ and NH4+ cations. J. Biomol. Struct. Dyn. 1985, 2, 1245–1254.CrossrefGoogle Scholar

  • [18]

    Basch H, Hornback CJ, Moskowitz JW. Gaussian-orbital basis sets for the first-row transition-metal atoms. J. Chem. Phys. 1969, 51, 1311–1318.Google Scholar

  • [19]

    Hay JP. Gaussian basis sets for molecular calculations. the representation of 3d orbitals in transition-metal atoms. J. Chem. Phys. 1977, 66, 4377–4384.Google Scholar

  • [20]

    Hay JP, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.Google Scholar

  • [21]

    Parr RG, Yang W. Density-Functional Theory of Atoms and Molecules, Oxford University Press: USA, 1989.Google Scholar

  • [22]

    Fiolhais C, Nogueira F, Marques MAL, Eds., A Primer in Density Functional Theory, Springer: Berlin Heidelberg, 2003.Google Scholar

  • [23]

    Dreizler RM, Engel E. Density Functional Theory, an Advanced Course, Springer: Berlin Heidelberg, 2011.Google Scholar

  • [24]

    Šponer J, Lankaš F, Eds., Computational Studies of RNA and DNA, Springer: Netherlands, 2006.Google Scholar

  • [25]

    Gomez-Ruiz S, Maksimović-Ivanić D, Mijatović S, Kaluderović GN. On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy. Bioinorg. Chem. Appl. 2012, 2012, 140284.Google Scholar

  • [26]

    Clever GH, Carell T. Controlled stacking of 10 transition-metal ions inside a DNA duplex. Angew. Chem. Int. Ed. 2007, 46, 250–253.CrossrefGoogle Scholar

  • [27]

    Yeh HC, Sharma J, Shih IM, Vu DM, Martinez JS, Werner JH. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 2012, 134, 11550–11558.CrossrefGoogle Scholar

  • [28]

    Schultz D, Gardner K, Oemrawsingh SSR, Markešević N, Olsson K, Debord M, Bouwmeester D, Gwinn E. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 2013, 25, 2797–2803.CrossrefGoogle Scholar

  • [29]

    Lippert B. Multiplicity of metal ion binding patterns to nucleobases. Coord. Chem. Rev. 2000, 200–202, 487–516.Google Scholar

  • [30]

    McFail-Isom L, Sines CC, Williams LD. DNA structure: cations in charge? Curr. Opin. Struct. Biol. 1999, 9, 298–304.CrossrefGoogle Scholar

  • [31]

    Nakano S, Fujimoto M, Hara H, Sugimoto N. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res. 1999, 27, 2957–2965.CrossrefGoogle Scholar

  • [32]

    Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006, 34, 564–574.CrossrefGoogle Scholar

  • [33]

    Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205, 698–699.Google Scholar

  • [34]

    Sherman SE, Lippard SJ. Structural aspects of platinum anticancer drug interactions with DNA. Chem. Rev. 1987, 87, 1153–1181.CrossrefGoogle Scholar

  • [35]

    Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2001, 3, 1351–1371.Google Scholar

  • [36]

    Boulikas T, Pantos A, Bellis E, Christofis P. Designing platinum compounds in cancer: structures and mechanisms. Cancer Ther. 2007, 5, 537–583.Google Scholar

  • [37]

    Yang P, Guo M. Interactions of organometallic anticancer agents with nucleotides and DNA. Coord. Chem. Rev. 1999, 185–186, 189–211.Google Scholar

  • [38]

    Clever GH, Kaul C, Carell T. Dna–metal base pairs. Angew. Chem. Int. Ed. 2007, 46, 6226–6236.CrossrefGoogle Scholar

  • [39]

    Novotny L, Hecht B. Principles of Nano-Optics, Cambridge University Press: New York, 2006.Google Scholar

  • [40]

    Aikens CM, Li S, Schatz GC. From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. J. Phys. Chem. C 2008, 112, 11272–11279.Google Scholar

  • [41]

    Geddes CD, Ed., Reviews in plasmonics 2010. In Reviews in Plasmonics, Springer: New York, 2012.Google Scholar

  • [42]

    Tan SJ, Campolongo MJ, Luo D, Cheng W. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276.CrossrefGoogle Scholar

  • [43]

    Young KL, Ross MB, Blaber MG, Rycenga M, Jones MR, Zhang C, Senesi AJ, Lee B, Schatz GC, Mirkin CA. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv. Mater. 2014, 26, 653–659.CrossrefGoogle Scholar

  • [44]

    Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S. Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull. 2012, 45, 69–74.CrossrefGoogle Scholar

  • [45]

    Morishita K, MacLean JL, Liu B, Jiang H, Liu J. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters. Nanoscale 2013, 5, 2840–2849.CrossrefGoogle Scholar

  • [46]

    Swasey SM, Karimova N, Aikens CM, Schultz DE, Simon AJ, Gwinn EG. Chiral electronic transitions in fluorescent silver clusters stabilized by dna. ACS Nano 2014, 8, 6883–6892.CrossrefGoogle Scholar

  • [47]

    Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y. Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chem. Commun. 2008, 39, 4825–4827.CrossrefGoogle Scholar

  • [48]

    Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A. 15N–15N J-Coupling across Hg(II): direct observation of Hg(II)-mediated T–T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007, 129, 244–245.CrossrefGoogle Scholar

  • [49]

    Del Bene JE. Theoretical study of open chain dimers and trimers containing CH3OH and H2O. J. Chem. Phys. 1971, 55, 4633–4636.Google Scholar

  • [50]

    Del Bene JE. Molecular orbital theory of the hydrogen bond. 28. Water-5-fluorouracil complexes. J. Phys. Chem. 1982, 86, 1341–1347.Google Scholar

  • [51]

    Burda JV, Šponer J, Hobza P. Ab initio study of the interaction of guanine and adenine with various mono- and bivalent metal cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). J. Phys. Chem. 1996, 100, 7250–7255.CrossrefGoogle Scholar

  • [52]

    Burda JV, Šponer J, Leszczynski J, Hobza P. Interaction of DNA base pairs with various metal cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): nonempirical ab initio calculations on structures, energies, and nonadditivity of the interaction. J. Phys. Chem. B 1997, 101, 9670–9677.CrossrefGoogle Scholar

  • [53]

    Šponer J, Leszczynski J, Hobza P. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 2001, 61, 3–31.CrossrefGoogle Scholar

  • [54]

    Echenique P, Alonso JL. A mathematical and computational review of Hartree–Fock SCF methods in quantum chemistry. Mol. Phys. 2007, 105, 3057–3098.CrossrefGoogle Scholar

  • [55]

    Bartlett RJ, Stanton JF. Applications of Post-Hartree–Fock Methods: A Tutorial. In Reviews in Computational Chemistry. Lipkowitz, KB, Boyd, DB, Eds., John Wiley & Sons, Inc.: New York, 2007, pp. 65–169.Google Scholar

  • [56]

    Kryachko ES, Remacle F. Complexes of DNA bases and gold clusters Au3 and Au4 involving nonconventional N–H···Au hydrogen bonding. Nano Lett. 2005, 5, 735–739.CrossrefGoogle Scholar

  • [57]

    Kryachko ES, Remacle F. Complexes of DNA bases and Watson–Crick base pairs with small neutral gold clusters. J. Phys. Chem. B 2005, 109, 22746–22757.CrossrefGoogle Scholar

  • [58]

    Kryachko ES, Remacle F. Three-gold cluster as proton acceptor in nonconventional hydrogen bonds O-H···Au and N-H···Au. In Recent Advances in the Theory of Chemical and Physical Systems. Progress in Theoretical Chemistry and Physics, Julien, JP, Maruani, J, Mayou, D, Wilson, S, Delgado-Barrio, G, Eds., Springer: Netherlands, 2006. pp. 433–450.Google Scholar

  • [59]

    Kryachko ES, Remacle F. Small gold clusters form nonconventional hydrogen bonds X-H···Au: gold-water clusters as example. In Theoretical Aspects of Chemical Reactivity. Theoretical and Computational Chemistry, Toro-Labbé, A, Ed., Elsevier: Amsterdam, 2007, pp. 219–250.Google Scholar

  • [60]

    Kryachko ES. Where gold meets a hydrogen bond? J. Mol. Struct. 2008, 880, 23–30.Google Scholar

  • [61]

    Kryachko ES. Nonconventional hydrogen bonding and vertical electron detachment in anionic complexes of gold with DNA bases: few essayistic fragments. Polish J. Chem. A. Koll Festschrift 2009, 83, 917–931.Google Scholar

  • [62]

    Kryachko ES. To nano-biochemistry: picture of the interactions of DNA with gold. In Quantum Biochemistry, Matta, CF, Ed., Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010, pp. 245–306.Google Scholar

  • [63]

    Vrkic AK, Taverner T, James PF, O’Hair RAJ. Gas phase ion chemistry of charged silver(I) adenine ions via multistage mass spectrometry experiments and DFT calculations. Dalton Trans. 2004, 2, 197–208.CrossrefGoogle Scholar

  • [64]

    Soto-Verdugo V, Metiu H, Gwinn E. The properties of small Ag clusters bound to DNA bases. J. Chem. Phys. 2010, 132, 195102.Google Scholar

  • [65]

    Vyas N, Ojha AK. Interaction of gold nanoclusters of different size with adenine: A density functional theory study of neutral, anionic and cationic forms of [adenine+(Au)n=3,6,9,12] complexes. Comput. Theor. Chem. 2012, 984, 93–101.Google Scholar

  • [66]

    Acioli PH, Srinivas S. Silver- and gold-mediated nucleobase bonding. J. Mol. Model. 2014, 20, 2391.CrossrefGoogle Scholar

  • [67]

    Martínez A. Theoretical study of guanine–Cu and uracil–Cu (neutral, anionic, and cationic). Is it possible to carry out a photoelectron spectroscopy experiment? J. Chem. Phys. 2005, 123, 024311.Google Scholar

  • [68]

    Valdespino-Saenz J, Martínez A. Theoretical study of neutral, anionic, and cationic uracil–Ag and uracil–Au systems: nonconventional hydrogen bonds. J. Phys. Chem. A 2008, 112, 2408–2414.CrossrefGoogle Scholar

  • [69]

    Marino T, Russo N, Toscano M, Pavelka M. Theoretical investigation on DNA/RNA base pairs mediated by copper, silver, and gold cations. Dalton Trans. 2012, 41, 1816–1823.CrossrefGoogle Scholar

  • [70]

    Martínez A. Do anionic gold clusters modify conventional hydrogen bonds? the interaction of anionic Aun (n =2–4) with the adenine–uracil base pair. J. Phys. Chem. A 2009, 113, 1134–1140.CrossrefGoogle Scholar

  • [71]

    Lv G, Wei F, Jiang H, Zhou Y, Wang X. DFT study on the intermolecular interactions between Aun (n=2–4) and thymine. J. Mol. Struct.: THEOCHEM. 2009, 915, 98–104.Google Scholar

  • [72]

    Brancolini G, Di Felice R. Combined effects of metal complexation and size expansion in the electronic structure of DNA base pairs. J. Chem. Phys. 2011, 134, 205102.Google Scholar

  • [73]

    Samanta PK, Pati SK. Structural, electronic and photophysical properties of analogous RNA nucleosides: a theoretical study. New J. Chem. 2013, 37, 3640–3646.Google Scholar

  • [74]

    Rai S, Ranjan S, Singh H, Priyakumar UD. Modulation of structural, energetic and electronic properties of DNA and size-expanded dna bases upon binding to gold clusters. RSC Adv. 2014, 4, 29642–29651.Google Scholar

  • [75]

    Cerón-Carrasco JP, Requena A, Jacquemin D. Impact of DFT functionals on the predicted magnesium–DNA interaction: an ONIOM study. Theor. Chem. Acc. 2012, 131, 1188.Google Scholar

  • [76]

    Ramazanov RR, Kononov AI. Excitation spectra argue for threadlike shape of DNA-stabilized silver fluorescent clusters. J. Phys. Chem. C 2013, 117, 18681–18687.CrossrefGoogle Scholar

  • [77]

    Samanta PK, Manna AK, Pati SK. Structural, electronic, and optical properties of metallo base pairs in duplex DNA: a theoretical insight. Chem. Asian J. 2012, 7, 2718–2728.CrossrefGoogle Scholar

  • [78]

    Kumbhar S, Johannsen S, Sigel RK, Waller MP, Müller J. A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs. J. Inorg. Biochem. 2013, 127, 203–210.CrossrefGoogle Scholar

  • [79]

    Wales DJ, Doye JPK. Global optimization by Basin-Hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A 1997, 101, 5111–5116.CrossrefGoogle Scholar

  • [80]

    Wales DJ, Scheraga HA. Global optimization of clusters, crystals, and biomolecules. Science 1999, 285, 1368–1372.Google Scholar

  • [81]

    Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter. 2009, 21, 084204.CrossrefGoogle Scholar

  • [82]

    Mortensen JJ, Hansen LB, Jacobsen KW. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 2005, 71, 035109.CrossrefGoogle Scholar

  • [83]

    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter. 2010, 22, 253202.CrossrefGoogle Scholar

  • [84]

    Blöchl PE. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossrefGoogle Scholar

  • [85]

    Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Math. Prog. 1989, 45, 503–528.CrossrefGoogle Scholar

  • [86]

    Lu XJ, Olson WK. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003, 31, 5108–5121.CrossrefGoogle Scholar

  • [87]

    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012, 4, 1–17.Google Scholar

  • [88]

    Kokalj A. XCrySDen–a new program for displaying crystalline structures and electron densities. J. Mol. Graphics Modell. 1999, 17, 176–179.CrossrefGoogle Scholar

  • [89]

    Veljkovic DZ, Medakovic VB, Andric JM, Zaric SD. C-H/O interactions of nucleic bases with a water molecule: a crystallographic and quantum chemical study. CrystEngComm. 2014, 16, 10089–10096.CrossrefGoogle Scholar

  • [90]

    Jurečka P, Hobza P. True Ssabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine···cytosine, adenine···thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. J. Am. Chem. Soc. 2003, 125, 15608–15613.CrossrefGoogle Scholar

  • [91]

    Dabkowska I, Gonzalez HV, Jurečka P, Hobza P. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5′-d(GCGAAGC)-3′ hairpin: complete basis set calculations at the MP2 and CCSD(T) levels. J. Phys. Chem. A 2005, 109, 1131–1136.Google Scholar

  • [92]

    Jurečka P, Šponer J, Cerny J, Hobza P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 2006, 8, 1985–1993.CrossrefGoogle Scholar

  • [93]

    Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.CrossrefGoogle Scholar

  • [94]

    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossrefGoogle Scholar

  • [95]

    Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.CrossrefGoogle Scholar

  • [96]

    Cao GJ, Xu HG, Li RZ, Zheng W. Hydrogen bonds in the nucleobase-gold complexes: photoelectron spectroscopy and density functional calculations. J. Chem. Phys. 2012, 136, 014305.Google Scholar

  • [97]

    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MA, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.CrossrefGoogle Scholar

  • [98]

    Vázquez MV, Martínez A. Theoretical study of cytosine-Al, cytosine-Cu and cytosine-Ag (neutral, anionic and cationic). J. Phys. Chem. A 2008, 112, 1033–1039.CrossrefGoogle Scholar

  • [99]

    Schreiber M, González L. Structure and bonding of Ag(I)–DNA base complexes and Ag(I)–adenine–cytosine mispairs: an ab initio study. J. Comput. Chem. 2007, 28, 2299–2308.CrossrefGoogle Scholar

  • [100]

    Kurita N, Danilov VI, Anisimov VM. The structure of Watson–Crick DNA base pairs obtained by MP2 optimization. Chem. Phys. Lett. 2005, 404, 164–170.Google Scholar

  • [101]

    Šponer J, Jurečka P, Hobza P. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J. Am. Chem. Soc. 2004, 126, 10142–10151.CrossrefGoogle Scholar

  • [102]

    Hanke F. Sensitivity analysis and uncertainty calculation for dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1424–1430.CrossrefGoogle Scholar

  • [103]

    Hohenstein EG, Chill ST, Sherrill CD. Assessment of the performance of the M05–2X and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules. J. Chem. Theory Comput. 2008, 4, 1996–2000.CrossrefGoogle Scholar

  • [104]

    Roca-Sanjuán D, Rubio M, Merchán M, Serrano-Andrés L. Ab initio determination of the ionization potentials of DNA and RNA nucleobases. J. Chem. Phys. 2006, 125, 084302.Google Scholar

  • [105]

    Roca-Sanjuán D, Merchán M, Serrano-Andrés L, Rubio M. Ab initio determination of the electron affinities of DNA and RNA nucleobases. J. Chem. Phys. 2008, 129, 095104.Google Scholar

  • [106]

    Paukku Y, Hill G. Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks. J. Phys. Chem. A 2011, 115, 4804–4810.CrossrefGoogle Scholar

  • [107]

    Close DM, Øhman KT. Ionization energies of the nucleotides. J. Phys. Chem. A 2008, 112, 11207–11212.CrossrefGoogle Scholar

  • [108]

    Gu J, Xie Y, Schaefer HF. Electron attachment to DNA single strands: gas phase and aqueous solution. Nucleic Acids Res. 2007, 35, 5165–5172.CrossrefGoogle Scholar

  • [109]

    Lide DR, Ed., Handbook of Chemistry and Physics, 84th ed., CRC Press, Taylor & Francis: Boca Raton, 2003.Google Scholar

  • [110]

    Sun W, Di Felice R. Nature of the interaction between natural and size-expanded guanine with gold clusters: a density functional theory study. J. Phys. Chem. C 2012, 116, 24954–24961.CrossrefGoogle Scholar

  • [111]

    Perdew JP, Levy M. Physical content of the exact Kohn-Sham orbital energies:band gaps and derivative discontinuities. Phys. Rev. Lett. 1983, 51, 1884–1887.CrossrefGoogle Scholar

  • [112]

    Refaely-Abramson S, Baer R, Kronik L. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys. Rev. B 2011, 84, 075144.CrossrefGoogle Scholar

  • [113]

    van Leeuwen R, Baerends EJ. Exchange-correlation potential with correct asymptotic behavior. Phys. Rev. A 1994, 49, 2421–2431.CrossrefGoogle Scholar

  • [114]

    Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57.Google Scholar

About the article

Leonardo Andres Espinosa Leal

Olga Lopez-Acevedo is an Academy Fellow and Group Leader in the Centre of Excellence on Computational Nanosciences, Aalto University, Finland. Her research interest focuses on the quantum modeling of hybrid soft-nano systems and the development of computational methods for multi-scale simulations. She obtained her Bachelor’s and Master’s degrees in physics from the University of Strasbourg, France. In 2006, she obtained a PhD in theoretical physics working on quantum algorithmics from the University of Cergy-Pontoise, France. Her postdoctoral experience includes stays at the Université Libre de Bruxelles, Belgium, and University of Jyväskylä, Finland.

Olga Lopez-Acevedo

Olga Lopez-Acevedo is an Academy Fellow and Group Leader in the Centre of Excellence on Computational Nanosciences, Aalto University, Finland. Her research interest focuses on the quantum modeling of hybrid soft-nano systems and the development of computational methods for multi-scale simulations. She obtained her Bachelor’s and Master’s degrees in physics from the University of Strasbourg, France. In 2006, she obtained a PhD in theoretical physics working on quantum algorithmics from the University of Cergy-Pontoise, France. Her postdoctoral experience includes stays at the Université Libre de Bruxelles, Belgium, and University of Jyväskylä, Finland.

Corresponding author: Olga Lopez-Acevedo, COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland

Received: 2014-11-25

Accepted: 2015-01-12

Published Online: 2015-03-14

Published in Print: 2015-04-01

Citation Information: Nanotechnology Reviews, Volume 4, Issue 2, Pages 173–191, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2012-0047.

Export Citation

©2015 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Martín I. Taccone, Matías Berdakin, Gustavo A. Pino, and Cristián G. Sánchez
Physical Chemistry Chemical Physics, 2018
Brandon B. Dale, Ravithree D. Senanayake, and Christine M. Aikens
APL Materials, 2017, Volume 5, Number 5, Page 053102
Leonardo Andrés Espinosa Leal, Alexander Karpenko, Steven Swasey, Elisabeth G. Gwinn, Victor Rojas-Cervellera, Carme Rovira, and Olga Lopez-Acevedo
The Journal of Physical Chemistry Letters, 2015, Volume 6, Number 20, Page 4061

Comments (0)

Please log in or register to comment.
Log in