Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year

IMPACT FACTOR 2017: 1.904
5-year IMPACT FACTOR: 1.945

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.544
Source Normalized Impact per Paper (SNIP) 2017: 0.528

See all formats and pricing
More options …
Volume 4, Issue 3


Ultra-thin films for plasmonics: a technology overview

Radu Malureanu
  • Corresponding author
  • Department of Photonics Engineering, Technical University of Denmark, Oersteds plads, bldg. 343, 2800, Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrei Lavrinenko
  • Department of Photonics Engineering, Technical University of Denmark, Oersteds plads, bldg. 343, 2800, Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-03 | DOI: https://doi.org/10.1515/ntrev-2015-0021


Ultra-thin films with low surface roughness that support surface plasmon-polaritons in the infra-red and visible ranges are needed in order to improve the performance of devices based on the manipulation of plasmon propagation. Increasing amount of efforts is made in order not only to improve the quality of the deposited layers but also to diminish their thickness and to find new materials that could be used in this field. In this review, we consider various thin films used in the field of plasmonics and metamaterials in the visible and IR range. We focus our presentation on technological issues of their deposition and reported characterization of film plasmonic performance.

Keywords: plasmonics; ultra-thin films; VIS/IR range


  • [1]

    Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, vol. 111. Springer: Berlin Heidelberg, 1988.Google Scholar

  • [2]

    Soref R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687.CrossrefGoogle Scholar

  • [3]

    Maier SA. Plasmonics: Fundamentals and Applications, Springer: New York, USA, 2007.Google Scholar

  • [4]

    Bozhevolnyi SI. Plasmonic Nanoguides and Circuits, Pan Stanford Publishing: Singapore, 2008.Google Scholar

  • [5]

    Berini P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 2009, 1, 484–588.CrossrefGoogle Scholar

  • [6]

    Logeeswaran VJ, Chan M-L, Bayam Y, Saif Islam M, Horsley DA, Li X, Wu W, Wang SY, Williams RS. Ultra-smooth metal surfaces generated by pressure-induced surface deformation of thin metal films. Appl. Phys. A 2007, 87, 187–192.CrossrefGoogle Scholar

  • [7]

    Kinsey N, Ferrera M, Shalaev VM, Boltasseva A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. J. Opt. Soc. Am. B 2014, 32, 121–142.Google Scholar

  • [8]

    Noginov MA, Barnakov YA, Zhu G, Tumkur T, Li H, Narimanov EE. Bulk photonic metamaterial with hyperbolic dispersion. Appl. Phys. Lett. 2009, 94, 151105.CrossrefGoogle Scholar

  • [9]

    Kidwai O, Zhukovsky SV, Sipe JE. Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations. Phys. Rev. A 2012, 85, 53842.CrossrefGoogle Scholar

  • [10]

    West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795–808.Google Scholar

  • [11]

    Blaber MG, Arnold MD, Ford MJ. A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter. 2010, 22, 143201.CrossrefGoogle Scholar

  • [12]

    Naik GV, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 2011, 1, 1090–1099.CrossrefGoogle Scholar

  • [13]

    Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2012, 2, 478–489.CrossrefGoogle Scholar

  • [14]

    Frölich A, Wegener M. Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials [Invited]. Opt. Mater. Express 2011, 1, 883–889.CrossrefGoogle Scholar

  • [15]

    Noginov MA, Gu L, Livenere J, Zhu G, Pradhan AK, Mundle R, Bahoura M, Barnakov YA, Podolskiy VA. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 2011, 99, 21101.CrossrefGoogle Scholar

  • [16]

    Li D, Ning CZ. All-semiconductor active plasmonic system in mid-infrared wavelengths. Opt. Express 2011, 19, 14594–14603.CrossrefGoogle Scholar

  • [17]

    Naik GV, Boltasseva A. Semiconductors for plasmonics and metamaterials. Phys. status solidi Rapid Res. Lett. 2010, 4, 295–297.Google Scholar

  • [18]

    Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758.CrossrefGoogle Scholar

  • [19]

    Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014; 8, 1086–1101.CrossrefGoogle Scholar

  • [20]

    Sze SM, Lee M-K. Semiconductor Devices: Physics and Technology, 3rd ed., New York: John Wiley & Sons, 2012.Google Scholar

  • [21]

    May GS, Sze SM. Fundamentals of Semiconductor Fabrication. New York: John Wiley & Sons, 2007, p. 305.Google Scholar

  • [22]

    Malureanu R, Zalkovskij M, Andryieuski A, Lavrinenko AV. Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles. J. Electrochem. Soc. 2010, 157, K284.Google Scholar

  • [23]

    Radke A, Gissibl T, Klotzbücher T, Braun PV, Giessen H. Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv. Mater. 2011, 23, 3018–3021.PubMedCrossrefGoogle Scholar

  • [24]

    Lee HM, Choi S-Y, Jung A. Direct deposition of highly conductive aluminum thin film on substrate by solution-dipping process. ACS Appl. Mater. Interfaces 2013, 5, 4581–4585.CrossrefGoogle Scholar

  • [25]

    Joy DC. Scanning Electron Microscopy, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2006.Google Scholar

  • [26]

    Eaton P, West P. Atomic Force Microscopy, Oxford University Press: New York, 2010, p. 256.Google Scholar

  • [27]

    Williams DB, Carter CB. The Transmission Electron Microscopy, Springer: US, 1996.Google Scholar

  • [28]

    Stroscio JA, Kaiser WJ. Scanning Tunelling Microscopy. San Diego: Academic Press, Inc., 1993.Google Scholar

  • [29]

    Ullman A. Characterisation of Organic Thin Films. Momentum Press: New York, 2010.Google Scholar

  • [30]

    Ichimiya A, Cohen PI. Reflection High Energy Electron Diffraction, Cambridge: Cambridge University Press, 2004.Google Scholar

  • [31]

    Kawata S, Ohtsu M, Irie M. Near-Field Optics and Surface Plasmon Polaritons. Springer-Verlag GMBH: Berlin, 2001.Google Scholar

  • [32]

    vom Felde A, Sprösser-Prou J, Fink J. Valence-electron excitations in the alkali metals. Phys. Rev. B 1989; 40, 10181–10193.Google Scholar

  • [33]

    Ritchie R. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874–881.CrossrefGoogle Scholar

  • [34]

    Kretschmann E. The determination of the optical constants of metals by excitation of surface plasmons. Eur. Phys. J. A 1971, 241, 313–324.Google Scholar

  • [35]

    Giergiel J, Reed CE, Hemminger JC, Ushioda S. Surface plasmon polariton enhancement of Raman scattering in a Kretschmann geometry. J. Phys. Chem. 1988, 92, 5357–5365.CrossrefGoogle Scholar

  • [36]

    Pollard JD, Sambles JR. The time-dependence of the growth of thin organic liquid layers on a gold surface, studied by surface-plasmon polariton techniques. Opt. Commun. 1987, 64, 529–533.CrossrefGoogle Scholar

  • [37]

    Innes RA, Sambles JR. Optical characterisation of gold using surface plasmon-polaritons. J. Phys. F Met. Phys. 1987, 17, 277–287.CrossrefGoogle Scholar

  • [38]

    Voss R, Laibowitz R, Allessandrini E. Fractal (Scaling) clusters in thin gold films near the percolation threshold. Phys. Rev. Lett. 1982, 49, 1441–1444.CrossrefGoogle Scholar

  • [39]

    Mahapatro AK, Scott A, Manning A, Janes DB. Gold surface with sub-nm roughness realized by evaporation on a molecular adhesion monolayer. Appl. Phys. Lett. 2006, 88, 151917.CrossrefGoogle Scholar

  • [40]

    You H, Chiarello R, Kim H, Vandervoort K. X-ray reflectivity and scanning-tunneling-microscope study of kinetic roughening of sputter-deposited gold films during growth. Phys. Rev. Lett. 1993, 70, 2900–2903.CrossrefGoogle Scholar

  • [41]

    Chiarello RP, You H, Kim HK, Roberts T, Kempwirth RT, Miller D, Gray KE, Vandervoort KG, Trivedi N, Phillpot SR, Zhang QJ, Williams S, Ketterson JB. X-ray reflectivity study on gold films during sputter deposition. Surf. Sci. 1997, 380, 245–257.Google Scholar

  • [42]

    Park JW, Pedraza AJ, Allen WR. The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates. Appl. Surf. Sci. 1996, 103, 39–48.CrossrefGoogle Scholar

  • [43]

    Varchenya SA, Simanovskis A, Stolyarova SV. Adhesion of thin metallic films to non-metallic substrates. Thin Solid Films 1988, 164, 147–152.CrossrefGoogle Scholar

  • [44]

    Lee M-L, Sheu J-K, Hu CC. Nonalloyed Cr/Au-based Ohmic contacts to n-GaN. Appl. Phys. Lett. 2007, 91, 182106.CrossrefGoogle Scholar

  • [45]

    Majni G, Ottaviani G, Prudenziati M. Interdiffusion of thin Cr and Au films deposited on silicon. Thin Solid Films 1976, 38, 15–19.CrossrefGoogle Scholar

  • [46]

    Habteyes TG, Dhuey S, Wood E, Gargas D, Cabrini S, Schuck PJ, Alivisatos AP, Leone SR. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 2012, 6, 5702–5709.CrossrefGoogle Scholar

  • [47]

    Kästle G, Boyen H-G, Koslowski B, Plettl A, Weigl F, Ziemann P. Growth of thin, flat, epitaxial () oriented gold films on c-cut sapphire. Surf. Sci. 2002, 498, 168–174.Google Scholar

  • [48]

    Leosson K, Ingason AS, Agnarsson B, Kossoy A, Olafsson S, Gather MC. Ultra-thin gold films on transparent polymers. Nanophotonics 2013, 2, 3–11.Google Scholar

  • [49]

    Fang X, Mak CL, Dai J, Li K, Ye H, Leung CW. ITO/Au/ITO sandwich structure for near-infrared plasmonics. ACS Appl. Mater. Interfaces 2014, 6, 15743–15752.CrossrefGoogle Scholar

  • [50]

    Goss CA, Charych DH, Majda M. Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates. Anal. Chem. 1991, 63, 85–88.CrossrefGoogle Scholar

  • [51]

    Leandro L, Malureanu R, Rozlosnik N, Lavrinenko A. Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers. ACS Appl. Mater. Interfaces 2015, 7, 5797–5802.CrossrefGoogle Scholar

  • [52]

    Kossoy A, Simakov D, Olafsson S, Leosson K. Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements. Thin Solid Films 2013, 536, 50–53.Google Scholar

  • [53]

    Kawasaki M, Uchiki H. Sputter deposition of atomically flat Au(111) and Ag(111) films. Surf. Sci. 1997, 388, L1121–L1125.Google Scholar

  • [54]

    Fedotov VA, Uchino T, Ou JY. Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film. Opt. Express 2012, 20, 9545.CrossrefGoogle Scholar

  • [55]

    Hugall JT, Finnemore AS, Baumberg JJ, Steiner U, Mahajan S. Solvent-resistant ultraflat gold using liquid glass. Langmuir 2012, 28, 1347–1350.CrossrefGoogle Scholar

  • [56]

    Hegner M, Wagner P, Semenza G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf. Sci. 1993, 291, 39–46.Google Scholar

  • [57]

    Piscopiello E, Tapfer L, Antisari M, Paiano P, Prete P, Lovergine N. Formation of epitaxial gold nanoislands on (100) silicon. Phys. Rev. B 2008, 78, 35305.CrossrefGoogle Scholar

  • [58]

    Huang J-S, Callegari V, Geisler P, Brüning C, Kern J, Prangsma JC, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010, 1, 150.CrossrefGoogle Scholar

  • [59]

    Igumenov IK. MO CVD of noble metals. Le J. Phys. IV 1995, 05, C5–489–C5–496.Google Scholar

  • [60]

    Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Letters 1998, 51, 53–58.CrossrefGoogle Scholar

  • [61]

    Gu D, Zhang C, Wu Y-K, Guo LJ. Ultrasmooth and thermally stable silver-based thin films with subnanometer roughness by aluminum doping. ACS Nano 2014, 8, 10343–10351.CrossrefGoogle Scholar

  • [62]

    Antonello A, Jia B, He Z, Buso D, Perotto G, Brigo L, Brusatin G, Guglielmi M, Gu M, Martucci A. Optimized electroless silver coating for optical and plasmonic applications. Plasmonics 2012, 7, 633–639.CrossrefGoogle Scholar

  • [63]

    Rill MS, Plet C, Thiel M, Staude I, von Freymann G, Linden S, Wegener M. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 2008, 7, 543–546.CrossrefGoogle Scholar

  • [64]

    Wu Y, Zhang C, Estakhri NM, Zhao Y, Kim J, Zhang M, Liu X-X, Pribil GK, Alù A, Shih C-K, Li X. Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv. Mater. 2014, 26, 6106–6110.CrossrefGoogle Scholar

  • [65]

    Smith AR, Chao K-J, Niu Q, Shih C-K. Formation of atomically flat silver films on GaAs with a ‘Silver Mean’ quasi periodicity. Science 1996, 273, 226–228.Google Scholar

  • [66]

    Yu H, Jiang C, Ebert P, Wang X, White J, Niu Q, Zhang Z, Shih C. Quantitative determination of the metastability of flat Ag overlayers on GaAs(110). Phys. Rev. Lett. 2001, 88, 16102.CrossrefGoogle Scholar

  • [67]

    Lu Y-J, Kim J, Chen H-Y, Wu C, Dabidian N, Sanders CE, Wang C-Y, Lu M-Y, Li B-H, Qiu X, Chang W-H, Chen L-J, Shvets G, Shih C-K, Gwo S. Plasmonic nanolaser using epitaxially grown silver film. Science 2012, 337, 450–453.Google Scholar

  • [68]

    Li B-H, Sanders CE, McIlhargey J, Cheng F, Gu C, Zhang G, Wu K, Kim J, Mousavi SH, Khanikaev AB, Lu Y-J, Gwo S, Shvets G, Shih C-K, Qiu X. Contrast between surface plasmon polariton-mediated extraordinary optical transmission behavior in epitaxial and polycrystalline Ag films in the mid- and far-infrared regimes. Nano Lett. 2012, 12, 6187–6191.CrossrefGoogle Scholar

  • [69]

    Kapaklis V, Poulopoulos P, Karoutsos V, Manouras T, Politis C. Growth of thin Ag films produced by radio frequency magnetron sputtering. Thin Solid Films 2006, 510, 138–142.Google Scholar

  • [70]

    Park JH, Ambwani P, Manno M, Lindquist NC, Nagpal P, Oh S-H, Leighton C, Norris DJ. Single-Crystalline silver films for plasmonics. Adv. Mater. 2012, 24, 3988–3992.CrossrefGoogle Scholar

  • [71]

    Niskanen A, Hatanpää T, Arstila K, Leskelä M, Ritala M. Radical-Enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates. Chem. Vap. Depos. 2007, 13, 408–413.CrossrefGoogle Scholar

  • [72]

    Delgado JM, Orts JM, Rodes A. A comparison between chemical and sputtering methods for preparing thin-film silver electrodes for in situ ATR-SEIRAS studies. Electrochim. Acta 2007, 52, 4605–4613.CrossrefGoogle Scholar

  • [73]

    Logeeswaran VJ, Kobayashi NP, Islam MS, Wu W, Chaturvedi P, Fang NX, Wang SY, Williams RS. Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 2009, 9, 178–182.CrossrefGoogle Scholar

  • [74]

    Chen W, Thoreson MD, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt. Express 2010, 18, 5124–5134.CrossrefGoogle Scholar

  • [75]

    Logeeswaran VJ, Katzenmeyer A, Islam MS, Kobayashi NP, Wu W, Chaturvedi P, Fang NX, Wang SY, Williams RS. Electrical resistivity & thermal stability of smooth silver thin film for nanoscale optoelectronic devices. 2008 8th IEEE Conf. Nanotechnol. 2008, 92–94.Google Scholar

  • [76]

    Sergeant NP, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand BP. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv. Mater. 2012, 24, 728–732.CrossrefGoogle Scholar

  • [77]

    Lajaunie L, Boucher F, Dessapt R, Moreau P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO_{3}. Phys. Rev. B 2013, 88, 115141.CrossrefGoogle Scholar

  • [78]

    Guske JT, Brown J, Welsh A, Franzen S. Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films. Opt. Express, 2012, 20, 23215–23226.CrossrefGoogle Scholar

  • [79]

    Formica N, Ghosh DS, Carrilero A, Chen TL, Simpson RE, Pruneri V. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Appl. Mater. Interfaces 2013, 5, 3048–3053.CrossrefGoogle Scholar

  • [80]

    Nagpal P, Lindquist NC, Oh S-H, Norris DJ. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009, 325, 594–597.CrossrefGoogle Scholar

  • [81]

    Hass G, Waylonis JE. Optical constants and reflectance and transmittance of evaporated aluminum in the visible and ultraviolet. J. Opt. Soc. Am. 1961, 51, 719–722.CrossrefGoogle Scholar

  • [82]

    Lahiri B, McMeekin SG, Khokhar AZ, De La Rue RM, Johnson NP. Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt. Express 2010, 18, 3210–3218.CrossrefGoogle Scholar

  • [83]

    Zektzer R, Desiatov B, Mazurski N, Bozhevolnyi SI, Levy U. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs). Opt. Express 2014, 22, 22009–22017.CrossrefGoogle Scholar

  • [84]

    Dubois LH, Zegarski BR, Gross ME, Nuzzo RG. Aluminum thin film growth by the thermal decomposition of triethylamine alane. Surf. Sci. 1991, 244, 89–95.Google Scholar

  • [85]

    Solanki R, Ritchie WH, Collins GJ. Photodeposition of aluminum oxide and aluminum thin films. Appl. Phys. Lett. 1983, 43, 454–456.CrossrefGoogle Scholar

  • [86]

    McLeod PS, Hartsough LD. High-rate sputtering of aluminum for metallization of integrated circuits. J. Vac. Sci. Technol. 1977, 14, 263.CrossrefGoogle Scholar

  • [87]

    Hartsough LD, McLeod PS. High-rate sputtering of enhanced aluminum mirrors. J. Vac. Sci. Technol. 1977, 14, 123.CrossrefGoogle Scholar

  • [88]

    Arnell R, Bates R. The deposition of highly supersaturated metastable aluminium-magnesium alloys by unbalanced magnetron sputtering from composite targets. Vacuum 1992, 43, 105–109.CrossrefGoogle Scholar

  • [89]

    Lin S-W, Wu J-Y, Lin S-D, Lo M-C, Lin M-H, Liang C-T. Characterization of single-crystalline aluminum thin film on (100) GaAs substrate. Jpn. J. Appl. Phys. 2013, 52, 45801.CrossrefGoogle Scholar

  • [90]

    Emboras A, Najar A, Nambiar S, Grosse P, Augendre E, Leroux C, de Salvo B, de Lamaestre RE. MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices. Opt. Express 2012, 20, 13612–13621.CrossrefGoogle Scholar

  • [91]

    Volpati D, Spada ER, Plá Cid CC, Sartorelli ML, Aroca RF, Constantino CJL. Exploring copper nanostructures as highly uniform and reproducible substrates for plasmon-enhanced fluorescence. Analyst 2015, 140, 476–482.CrossrefGoogle Scholar

  • [92]

    Liu Z, Liu G, Liu X, Huang S, Liu M, Fu G, Gao H. Continuous copper film structures with broadband optical transparency. Mater. Lett. 2015, 139, 12–14.Google Scholar

  • [93]

    Chong X, Abboud J, Zhang Z. Plasmonics resonance enhanced active photothermal effects of aluminum and iron nanoparticles. J. Nanosci. Nanotechnol. 2015, 15, 2234–2240.CrossrefGoogle Scholar

  • [94]

    Hamidi SM, Sobhani A, Aftabi A, Najafi M. Optical and magneto-optical properties of aligned Ni nanowires embedded in polydimethylsiloxane. J. Magn. Magn. Mater. 2015, 374, 139–143.Google Scholar

  • [95]

    Quang NK, Miyauchi Y, Mizutani G, Charlton MD, Chen R, Boden S, Rutt H. Optical second harmonic generation of V-shaped chromium nanoholes-dependence on the structure parameters of the nanoholes. Surf. Interface Anal. 2014, 46, 1240–1244.CrossrefGoogle Scholar

  • [96]

    Mishra SK, Gupta BD. Surface plasmon resonance-based fiber-optic hydrogen sas sensor utilizing indium-tin oxide (ITO) thin films. Plasmonics 2012, 7, 627–632.CrossrefGoogle Scholar

  • [97]

    Babicheva VE, Kinsey N, Naik GV, Ferrera M, Lavrinenko AV, Shalaev VM, Boltasseva A. Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. Opt. Express 2013, 21, 27326–27337.CrossrefGoogle Scholar

  • [98]

    Melikyan A, Lindenmann N, Walheim S, Leufke PM, Ulrich S, Ye J, Vincze P, Hahn H, Schimmel T, Koos C, Freude W, Leuthold J. Surface plasmon polariton absorption modulator. Opt. Express 2011, 19, 8855–8869.CrossrefGoogle Scholar

  • [99]

    Naik GV, Shalaev VM, Boltasseva A. Semiconductor plasmonic metamaterials for near-infrared and telecommunication wavelength. Proc. SPIE 2010, 7754, 77540M–77540M–5.Google Scholar

  • [100]

    Naik GV, Boltasseva A. A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials 2011, 5, 1–7.CrossrefGoogle Scholar

  • [101]

    Babicheva VE, Lavrinenko AV. Plasmonic modulator optimized by patterning of active layer and tuning permittivity. Opt. Commun. 2012, 285, 5500–5507.Google Scholar

  • [102]

    Babicheva VE, Malureanu R, Lavrinenko AV. Plasmonic finite-thickness metal-semiconductor-metal waveguide as ultra-compact modulator. Photonics Nanostructures Fundam. Appl. 2013, 11, 323–334.Google Scholar

  • [103]

    Shi K, Haque RR, Zhao B, Zhao R, Lu Z. Broadband electro-optical modulator based on transparent conducting oxide. Opt. Lett. 2014, 39, 4978–4981.CrossrefGoogle Scholar

  • [104]

    Zhu S, Lo GQ, Kwong DL. Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration. Opt. Express 2014, 22, 17930–17947.CrossrefGoogle Scholar

  • [105]

    Abb M, Wang Y, Papasimakis N, de Groot CH, Muskens OL. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett. 2014, 14, 346–352.CrossrefGoogle Scholar

  • [106]

    Terzini E, Thilakan P, Minarini C. Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature. Mater. Sci. Eng. B 2000, 77, 110–114.CrossrefGoogle Scholar

  • [107]

    Thilakan P, Minarini C, Loreti S, Terzini E. Investigations on the crystallisation properties of RF magnetron sputtered indium tin oxide thin films. Thin Solid Films 2001, 388, 34–40.Google Scholar

  • [108]

    Hu Y, Diao X, Wang C, Hao W, Wang T. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum 2004, 75, 183–188.CrossrefGoogle Scholar

  • [109]

    Meng L, dos Santos M. Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature. Thin Solid Films 1998, 322, 56–62.Google Scholar

  • [110]

    Mergel D, Schenkel M, Ghebre M, Sulkowski M. Structural and electrical properties of In2O3:Sn films prepared by radio-frequency sputtering. Thin Solid Films 2001, 392, 91–97.Google Scholar

  • [111]

    Qiao Z, Latz R, Mergel D. Thickness dependence of In2O3:Sn film growth. Thin Solid Films 2004, 466, 250–258.Google Scholar

  • [112]

    Qiao Z, Mergel D. Comparison of radio-frequency and direct-current magnetron sputtered thin In2O3:Sn films. Thin Solid Films 2005, 484, 146–153.Google Scholar

  • [113]

    Khosroabadi AA, Gangopadhyay P, Duong B, Thomas J, Sigdel AK, Berry JJ, GennettT, Peyghambarian N, Norwood RA. Fabrication, electrical and optical properties of silver, indium tin oxide (ITO), and indium zinc oxide (IZO) nanostructure arrays. Phys. status solidi 2013, 210, 831–838.Google Scholar

  • [114]

    Guillén C, Herrero J. Transparent conductive ITO/Ag/ITO multilayer electrodes deposited by sputtering at room temperature. Opt. Commun. 2009, 282, 574–578.Google Scholar

  • [115]

    Chuang S-H, Tsung C-S, Chen C-H, Ou S-L, Horng R-H, Lin C-Y, Wuu D-S. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications. ACS Appl. Mater. Interfaces 2015, 7, 2546–2553.CrossrefGoogle Scholar

  • [116]

    Pincella F, Isozaki K, Miki K. A visible light-driven plasmonic photocatalyst. Light Sci. Appl. 2014, 3, e133.Google Scholar

  • [117]

    Vaishnav VS, Patel PD, Patel NG. Preparation and characterization of indium tin oxide thin films for their application as gas sensors. Thin Solid Films 2005, 487, 277–282.Google Scholar

  • [118]

    Mishra SK, Gupta BD. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst 2013, 138, 2640–2646.CrossrefGoogle Scholar

  • [119]

    Kim J, Naik GV, Gavrilenko AV, Dondapati K, Gavrilenko VI, Prokes SM, Glembocki OJ, Shalaev VM, Boltasseva A. Optical properties of gallium-doped zinc oxide – a low-loss plasmonic material: first-principles theory and experiment. Phys. Rev. X 2013, 3, 41037.Google Scholar

  • [120]

    Craciun V, Martin C, Socol G, Tanner D, Swart HC, Becherescu N, Craciun D. Optical properties of amorphous indium zinc oxide thin films synthesized by pulsed laser deposition. Appl. Surf. Sci. 2014, 306, 52–55.Google Scholar

  • [121]

    Winkler T, Schmidt H, Flügge H, Nikolayzik F, Baumann I, Schmale S, Johannes H-H, Rabe T, Hamwi S, Riedl T, Kowalsky W. Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices. Thin Solid Films 2012, 520, 4669–4673.Google Scholar

  • [122]

    El Hajj A, Lucas B, Chakaroun M, Antony R, Ratier B, Aldissi M. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion beam sputtering for optoelectronic devices. Thin Solid Films 2012, 520, 4666–4668.Google Scholar

  • [123]

    Su W, Song K, Huo D, Li B. Analysis of correlation between electrical and infrared optical properties of anatase Nb doped TiO2 films. Curr. Appl. Phys. 1213, 13, 556–561.Google Scholar

  • [124]

    Mendelsberg RJ, Zhu Y, Anders A. Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory. J. Phys. D. Appl. Phys. 2012, 45, 425302.CrossrefGoogle Scholar

  • [125]

    Lai K-C, Tsai F-J, Wang J-H, Yeh C-H, Houng M-P. Wet-etch texturing of ZnO:Ga back layer on superstrate-type microcrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1583–1586.CrossrefGoogle Scholar

  • [126]

    Kim Y-H, Kim D-W, Murakami R-I, Zhang D, Yoon S-W, Park S-H, Moon K-M. The study of transmittance and conductivity by Top ZnO thickness in ZnO/Ag/ZnO transparent conducting oxide films. Adv. Sci. Lett. 2011, 4, 1570–1573.CrossrefGoogle Scholar

  • [127]

    Losego MD, Efremenko AY, Rhodes CL, Cerruti MG, Franzen S, Maria J-P. Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance. J. Appl. Phys. 2009, 106, 24903.CrossrefGoogle Scholar

  • [128]

    Venugopal N, Kaur G, Mitra A. Plasmonics effect of Ag nanoislands covered n-Al:ZnO/p-Si heterostructure. Appl. Surf. Sci. 2014, 320, 30–42.Google Scholar

  • [129]

    Cleary JW, Nader Esfahani N, Vangala S, Guo J, Hendrickson JR, Leedy KD, Look DC. Mid-infrared extraordinary transmission through Ga-doped ZnO films with 2D hole arrays. Proc. SPIE 2014, 8987, 898704.Google Scholar

  • [130]

    Allen MS, Allen JW, Wenner BR, Look DC, Leedy KD. Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides. Opt. Eng. 2013, 52, 64603.CrossrefGoogle Scholar

  • [131]

    Look DC, Droubay TC, Chambers SA. Stable highly conductive ZnO via reduction of Zn vacancies. Appl. Phys. Lett. 2012, 101, 102101.CrossrefGoogle Scholar

  • [132]

    El Hajj A, Lucas B, Barbot A, Antony R, Ratier B, Aldissi M. Organic solar cells using a ZnO/Cu/ZnO anode deposited by ion beam sputtering at room temperature for flexible devices. J. Nanosci. Nanotechnol. 2013, 13, 5227–5232.CrossrefGoogle Scholar

  • [133]

    Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.CrossrefGoogle Scholar

  • [134]

    Steinmüller-Nethl D, Kovacs R, Gornik E, Rödhammer P. Excitation of surface plasmons on titanium nitride films: determination of the dielectric function. Thin Solid Films 1994, 237, 277–281.Google Scholar

  • [135]

    Felts JR, Law S, Roberts CM, Podolskiy V, Wasserman DM, King WP. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Appl. Phys. Lett. 2013, 102, 152110.CrossrefGoogle Scholar

  • [136]

    Ginn JC, Jarecki RL, Shaner EA, Davids PS. Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 2011, 110, 43110.CrossrefGoogle Scholar

  • [137]

    Law S, Adams DC, Taylor AM, Wasserman D. Mid-infrared designer metals. Opt. Express 2012, 20, 12155.CrossrefGoogle Scholar

  • [138]

    Law S, Podolskiy V, Wasserman D. Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics. Nanophotonics 2013, 2, 103–130.Google Scholar

  • [139]

    Law S, Yu L, Wasserman D. Epitaxial growth of engineered metals for mid-infrared plasmonics. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2013, 31, 3C121.Google Scholar

  • [140]

    Hsu S-W, Bryks W, Tao AR. Effects of carrier density and shape on the localized surface plasmon resonances of Cu 2- x S nanodisks. Chem. Mater. 2012, 24, 3765–3771.Google Scholar

  • [141]

    Yokoyama H, Hoshi T. P-type conductivity control of Si-doped GaAsSb layers grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 2015, 54, 15506.CrossrefGoogle Scholar

  • [142]

    Metaferia W, Kataria H, Sun Y-T, Lourdudoss S. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth. J. Phys. D. Appl. Phys. 2015, 48, 45102.CrossrefGoogle Scholar

  • [143]

    Ishizaka F, Hiraya Y, Tomioka K, Fukui T. Growth of wurtzite GaP in InP/GaP core-shell nanowires by selective-area MOVPE. J. Cryst. Growth 2015, 411, 71–75.Google Scholar

  • [144]

    Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy VA, Narimanov EE, Sivco DL, Gmachl C. Negative refraction in semiconductor metamaterials. Nat. Mater. 2007, 6, 946–950.CrossrefGoogle Scholar

  • [145]

    Avouris P, Xia F. Graphene applications in electronics and photonics. MRS Bull. 2012, 37, 1225–1234.CrossrefGoogle Scholar

  • [146]

    García de Abajo FJ. Applied physics. Graphene nanophotonics. Science 2013, 339, 917–918.Google Scholar

  • [147]

    Koppens FHL, Chang DE, García de Abajo FJ. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 2011, 11, 3370–3377.CrossrefGoogle Scholar

  • [148]

    Chen X, Boulos RA, Eggers PK, Raston CL. p-Phosphonic acid calix[8]arene assisted exfoliation and stabilization of 2D materials in water. Chem. Commun. (Camb). 2012, 48, 11407–11409.Google Scholar

  • [149]

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.Google Scholar

  • [150]

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossrefGoogle Scholar

  • [151]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh KP. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927–9933.CrossrefGoogle Scholar

  • [152]

    Obraztsov AN. Chemical vapour deposition: making graphene on a large scale. Nat. Nanotechnol. 2009, 4, 212–213.CrossrefGoogle Scholar

  • [153]

    Sun J, Lindvall N, Cole MT, Wang T, Booth TJ, Bøggild P, Teo KBK, Liu J, Yurgens A. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide. J. Appl. Phys. 2012, 111, 44103.CrossrefGoogle Scholar

  • [154]

    Khurgin JB, Sun G. In search of the elusive lossless metal. Appl. Phys. Lett. 2010, 96, 181102.CrossrefGoogle Scholar

  • [155]

    Khurgin JB. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 2015, 10, 2–6.CrossrefGoogle Scholar

About the article

Corresponding author: Radu Malureanu, Department of Photonics Engineering, Technical University of Denmark, Oersteds plads, bldg. 343, 2800, Kgs. Lyngby, Denmark, e-mail:

Received: 2015-03-17

Accepted: 2015-05-08

Published Online: 2015-06-03

Published in Print: 2015-06-01

Citation Information: Nanotechnology Reviews, Volume 4, Issue 3, Pages 259–275, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2015-0021.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Soo Sang Chae, Seunghun Jang, Wonki Lee, Du Won Jung, Keun Ho Lee, Jung Dong Kim, Dohyeon Jeong, Hyunju Chang, Jun Yeon Hwang, and Jeong-O. Lee
Small, 2018, Page 1801529
Lin Feng, Mengsi Niu, Zhenchuan Wen, and Xiaotao Hao
Polymers, 2018, Volume 10, Number 2, Page 123
J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 29, Page 25049
Oleg Lysenko, Morten Bache, Nicolas Olivier, Anatoly V. Zayats, and Andrei Lavrinenko
ACS Photonics, 2016, Volume 3, Number 12, Page 2324
Oleg Lysenko, Morten Bache, and Andrei Lavrinenko
Journal of the Optical Society of America B, 2016, Volume 33, Number 7, Page 1341

Comments (0)

Please log in or register to comment.
Log in