Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year

IMPACT FACTOR 2016: 1.438
5-year IMPACT FACTOR: 1.892

CiteScore 2016: 1.64

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.514

See all formats and pricing
More options …
Volume 4, Issue 6


Thermal transport across atomic-layer material interfaces

Yanan Yue / Jingchao Zhang / Xiaoduan Tang / Shen Xu / Xinwei Wang
Published Online: 2015-03-05 | DOI: https://doi.org/10.1515/ntrev-2014-0024


Emergence of two-dimensional (2D) materials with atomic-layer structures, such as graphene and MoS2, which have excellent physical properties, provides the opportunity of substituting silicon-based micro/nanoelectronics. An important issue before large-scale applications is the heat dissipation performance of these materials, especially when they are supported on a substrate, as in most scenarios. Thermal transport across the atomic-layer interface is essential to the heat dissipation of 2D materials due to the extremely large contact area with the substrate, when compared with their atomic-scale cross-sections. Therefore, the understanding of the interfacial thermal transport is important, but the characterization is very challenging due to the limitations for temperature/thermal probing of these atomic-layer structures. In this review, widely used characterization techniques for experimental characterization as well as their results are presented. Emphasis is placed on the Raman-based technology for nm and sub-nm temperature differential characterization. Then, we present physical understanding through theoretical analysis and molecular dynamics. A few representative works about the molecular dynamics studies, including our studies on the size effect and rectification phenomenon of the graphene-Si interfaces are presented. Challenges as well as opportunities in the thermal transport study of atomic-layer structures are discussed. Though many works have been reported, there is still much room in both the development of experimental techniques as well as atomic-scale simulations for a clearer understanding of the physical fundamentals of thermal transport across the atomic-layer interfaces, considering the remarkable complexity of physical/chemical conditions at the interface.

Keywords: 2D atomic-layer; graphene; interface; Raman spectroscopy; thermal resistance


  • [1]

    Wu YQ, Ye PD, Capano MA, Xuan Y, Sui Y, Qi M, Cooper JA, Shen T, Pandey D, Prakash G, Reifenberger R. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 2008, 92, 092102.CrossrefGoogle Scholar

  • [2]

    Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 2008, 101, 096802.CrossrefGoogle Scholar

  • [3]

    Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 2005, 438, 201–204.CrossrefGoogle Scholar

  • [4]

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossrefGoogle Scholar

  • [5]

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossrefGoogle Scholar

  • [6]

    Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495.CrossrefGoogle Scholar

  • [7]

    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossrefGoogle Scholar

  • [8]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207.CrossrefGoogle Scholar

  • [9]

    Lee JU, Yoon D, Kim H, Lee SW, Cheong H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 2011, 83, 081419.CrossrefGoogle Scholar

  • [10]

    Chen S, Moore AL, Cai W, Suk JW, An J, Mishra C, Amos C, Magnuson CW, Kang J, Shi L. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2010, 5, 321–328.Google Scholar

  • [11]

    Chien SK, Yang YT, Chen CK. Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon 2012, 50, 421–428.CrossrefGoogle Scholar

  • [12]

    Bagri A, Kim SP, Ruoff RS, Shenoy VB. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 2011, 11, 3917–3921.CrossrefGoogle Scholar

  • [13]

    Hu JN, Schiffli S, Vallabhaneni A, Ruan XL, Chen YP. Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study. Appl. Phys. Lett. 2010, 97, 133107.CrossrefGoogle Scholar

  • [14]

    Evans WJ, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 2010, 96, 203112.CrossrefGoogle Scholar

  • [15]

    Hu JN, Ruan XL, Chen YP. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 2009, 9, 2730–2735.CrossrefGoogle Scholar

  • [16]

    Zhang JC, Huang XP, Yue YN, Wang JM, Wang XW. Dynamic response of graphene to thermal impulse. Phys. Rev. B 2011, 84, 235416.CrossrefGoogle Scholar

  • [17]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2008, 9, 30–35.Google Scholar

  • [18]

    Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossrefGoogle Scholar

  • [19]

    Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659.CrossrefGoogle Scholar

  • [20]

    Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.CrossrefGoogle Scholar

  • [21]

    Yue Y, Zhang J, Wang X. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 2011, 7, 3324–3333.CrossrefGoogle Scholar

  • [22]

    Zhang CW, Zhao WW, Bi KD, Ma J, Wang JL, Ni ZH, Ni ZH, Chen YF. Heat conduction across metal and nonmetal interface containing imbedded graphene layers. Carbon 2013, 64, 61–66.CrossrefGoogle Scholar

  • [23]

    Hopkins PE, Baraket M, Barnat EV, Beechem TE, Kearney SP, Duda JC, Robinson JT, Walton SG. Manipulating thermal conductance at metal–graphene contacts via chemical functionalization. Nano Lett. 2011, 12, 590–595.Google Scholar

  • [24]

    Riedl C, Starke U, Bernhardt J, Franke M, Heinz K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.Google Scholar

  • [25]

    Tang X, Xu S, Zhang J, Wang X. Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces. ACS Appl. Mater. Interf. 2014, 6, 2809–2818.CrossrefGoogle Scholar

  • [26]

    Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542–1548.CrossrefGoogle Scholar

  • [27]

    Schmidt AJ, Collins KC, Minnich AJ, Chen G. Thermal conductance and phonon transmissivity of metal-graphite interfaces. J. Appl. Phys. 2010, 107, 104907.CrossrefGoogle Scholar

  • [28]

    Chen Z, Jang W, Bao W, Lau CN, Dames C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 2009, 95, 161910.CrossrefGoogle Scholar

  • [29]

    Mirmira S, Fletcher L. Review of the thermal conductivity of thin films. J. Thermophys. Heat Transf. 1998, 12, 121–131.CrossrefGoogle Scholar

  • [30]

    Zhang X, Grigoropoulos CP. Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev. Sci. Instrum. 1995, 66, 1115–1120.CrossrefGoogle Scholar

  • [31]

    Powell R. Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J. Sci. Instrum. 1957, 34, 485.CrossrefGoogle Scholar

  • [32]

    Völklein F. Thermal conductivity and diffusivity of a thin film sio2, si3n4 sandwich system. Thin Solid Films 1990, 188, 27–33.CrossrefGoogle Scholar

  • [33]

    Cahill DG, Fischer HE, Klitsner T, Swartz E, Pohl R. Thermal conductivity of thin films: measurements and understanding. J. Vacuum Sci. Technol. A 1989, 7, 1259–1266.CrossrefGoogle Scholar

  • [34]

    Käding O, Skurk H, Goodson K. Thermal conduction in metallized silicon-dioxide layers on silicon. Appl. Phys. Lett. 1994, 65, 1629–1631.CrossrefGoogle Scholar

  • [35]

    Redondo A, Beery JG. Thermal conductivity of optical coatings. J. Appl. Phys. 1986, 60, 3882–3885.CrossrefGoogle Scholar

  • [36]

    Wang X, Hu H, Xu X. Photo-acoustic measurement of thermal conductivity of thin films and bulk materials. J. Heat Transf. 2001, 123, 138–144.CrossrefGoogle Scholar

  • [37]

    Ohta H, Shibata H, Waseda Y. New attempt for measuring thermal diffusivity of thin films by means of a laser flash method. Rev. Sci. Instrum. 1989, 60, 317–321.CrossrefGoogle Scholar

  • [38]

    Swartz E, Pohl R. Thermal resistance at interfaces. Appl. Phys. Lett. 1987, 51, 2200–2202.CrossrefGoogle Scholar

  • [39]

    Borca-Tasciuc T, Kumar A, Chen G. Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 2001, 72, 2139–2147.Google Scholar

  • [40]

    Cahill DG, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 2002, 124, 223–241.CrossrefGoogle Scholar

  • [41]

    Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.CrossrefGoogle Scholar

  • [42]

    Mak KF, Shan J, Heinz TF. Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons. Phys. Rev. Lett. 2011, 106, 046401.CrossrefGoogle Scholar

  • [43]

    Mak KF, Lui CH, Heinz TF. Measurement of the thermal conductance of the graphene/SiO2 interface. Appl. Phys. Lett. 2010, 97, 221904.CrossrefGoogle Scholar

  • [44]

    Hsu IK, Kumar R, Bushmaker A, Cronin SB, Pettes MT, Shi L, Brintlinger T, Fuhrer MS, Cumings J. Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 2008, 92, 063119–063119-3.CrossrefGoogle Scholar

  • [45]

    Calizo I, Balandin A, Bao W, Miao F, Lau C. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.CrossrefGoogle Scholar

  • [46]

    Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.CrossrefGoogle Scholar

  • [47]

    Tang X, Xu S, Wang X. Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing. Nanoscale 2014, 6, 8822–8830.CrossrefGoogle Scholar

  • [48]

    Koh YK, Bae MH, Cahill DG, Pop E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 2010, 10, 4363–4368.CrossrefGoogle Scholar

  • [49]

    Chen CC, Li Z, Shi L, Cronin SB. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.CrossrefGoogle Scholar

  • [50]

    Wang HX, Gong JX, Pei YM, Xu ZP. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering. ACS Appl. Mater. Interf. 2013, 5, 2599–2603.CrossrefGoogle Scholar

  • [51]

    Landry ES, McGaughey AJH. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 2009, 80, 165304.CrossrefGoogle Scholar

  • [52]

    Zhang J, Wang X. Thermal transport in bent graphene nanoribbons. Nanoscale 2013, 5, 734–743.CrossrefGoogle Scholar

  • [53]

    Xu ZP, Buehler MJ. Heat dissipation at a graphene-substrate interface. J. Phys. Condens. Mat. 2012, 24, 47530.Google Scholar

  • [54]

    Wei ZY, Ni ZH, Bi KD, Chen MH, Chen YF. Interfacial thermal resistance in multilayer graphene structures. Phys. Lett. A 2011, 375, 1195–1199.CrossrefGoogle Scholar

  • [55]

    Persson BNJ, Ueba H. Heat transfer between weakly coupled systems: graphene on a-sio2. Europhys. Lett. 2010, 91, 56001.CrossrefGoogle Scholar

  • [56]

    Luo TF, Lloyd JR. Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions. Int. J. Heat Mass. Tran. 2010, 53, 1–11.CrossrefGoogle Scholar

  • [57]

    Zhong HL, Lukes JR. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 2006, 74, 125403.CrossrefGoogle Scholar

  • [58]

    Muller Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106, 6082–6085.CrossrefGoogle Scholar

  • [59]

    Schmidt AJ, Chen XY, Chen G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 2008, 79, 114902.CrossrefGoogle Scholar

  • [60]

    Lyeo HK, Cahill DG. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 2006, 73, 144301.CrossrefGoogle Scholar

  • [61]

    Stoner RJ, Maris HJ. Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 k. Phys. Rev. B 1993, 48, 16373–16387.CrossrefGoogle Scholar

  • [62]

    Zhang J, Wang Y, Wang X. Rough contact is not always bad for interfacial energy coupling. Nanoscale 2013, 5, 11598–11603.CrossrefGoogle Scholar

  • [63]

    Cheeke JDN, Ettinger H, Hebral B. Analysis of heat-transfer between solids at low-temperatures. Can. J. Phys. 1976, 54, 1749–1771.CrossrefGoogle Scholar

  • [64]

    Little WA. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 1959, 37, 334–349.CrossrefGoogle Scholar

  • [65]

    Swartz ET, Pohl RO. Thermal-boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668.CrossrefGoogle Scholar

  • [66]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E, Nika D, Balandin A, Bao W, Miao F, Lau CN. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911.CrossrefGoogle Scholar

  • [67]

    Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mat. 2002, 14, 783.CrossrefGoogle Scholar

  • [68]

    Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 1988, 61, 2879.CrossrefGoogle Scholar

  • [69]

    Dodson BW. Development of a many-body Tersoff-type potential for silicon. Phys. Rev. B 1987, 35, 2795.CrossrefGoogle Scholar

  • [70]

    Lindsay L, Broido D. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 2010, 81, 205441.CrossrefGoogle Scholar

  • [71]

    Hertel T, Walkup RE, Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870.CrossrefGoogle Scholar

  • [72]

    Xiao J, Dunham S, Liu P, Zhang Y, Kocabas C, Moh L, Huang Y, Hwang KC, Lu C, Huang W. Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett. 2009, 9, 4311–4319.CrossrefGoogle Scholar

  • [73]

    Ong ZY, Pop E. Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys. Rev. B 2010, 81, 155408.CrossrefGoogle Scholar

  • [74]

    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Computat. Phys. 1995, 117, 1–19.CrossrefGoogle Scholar

  • [75]

    Chang C, Okawa D, Garcia H, Majumdar A, Zettl A. Nanotube phonon waveguide. Phys. Rev. Lett. 2007, 99, 045901.CrossrefGoogle Scholar

  • [76]

    Yang N, Zhang G, Li B. Thermal rectification in asymmetric graphene ribbons. Appl. Phys. Lett. 2009, 95, 033107.CrossrefGoogle Scholar

  • [77]

    Cheh J, Zhao H. Thermal rectification in asymmetric u-shaped graphene flakes. J. Stat. Mech. Theory Exp. 2012, 2012, P06011.CrossrefGoogle Scholar

  • [78]

    Zhang G, Zhang H. Thermal conduction and rectification in few-layer graphene y junctions. Nanoscale 2011, 3, 4604–4607.CrossrefGoogle Scholar

  • [79]

    Gunawardana K, Mullen K, Hu J, Chen YP, Ruan X. Tunable thermal transport and thermal rectification in strained graphene nanoribbons. Phys. Rev. B 2012, 85, 245417.CrossrefGoogle Scholar

  • [80]

    Maruyama S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica. B. Condens. Matter 2002, 323, 193–195.CrossrefGoogle Scholar

  • [81]

    Yang N, Zhang G, Li B. Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 2010, 5, 85–90.CrossrefGoogle Scholar

  • [82]

    Zhang G, Li B. Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 2005, 123, 114714.CrossrefGoogle Scholar

  • [83]

    Chen J, Zhang G, Li B. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532–536.CrossrefGoogle Scholar

  • [84]

    Guo Z, Zhang D, Gong XG. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 163103.CrossrefGoogle Scholar

  • [85]

    Nika DL, Askerov AS, Balandin AA. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012, 12, 3238–3244.CrossrefGoogle Scholar

  • [86]

    Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.CrossrefGoogle Scholar

  • [87]

    Jo I, Pettes MT, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554.CrossrefGoogle Scholar

  • [88]

    Sahoo S, Gaur AP, Ahmadi M, Guinel MJF, Katiyar RS. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.Google Scholar

  • [89]

    Xie H, Hu M, Bao H. Thermal conductivity of silicene from first-principles. Appl. Phys. Lett. 2014, 104, 131906.CrossrefGoogle Scholar

  • [90]

    Bo L, Reddy CD, Jinwu J, Hongwei Z, Julia AB, Sergey VD, Kun Z. Thermal conductivity of silicene nanosheets and the effect of isotopic doping. J. Phys. D Appl. Phys. 2014, 47, 165301.Google Scholar

  • [91]

    Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G, Su G. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys. Rev. B 2014, 89, 054310.CrossrefGoogle Scholar

  • [92]

    Hu M, Zhang X, Poulikakos D. Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 2013, 87, 195417.CrossrefGoogle Scholar

  • [93]

    Jing Y, Hu M, Guo L. Thermal conductivity of hybrid graphene/silicon heterostructures. J. Appl. Phys. 2013, 114, 153518.CrossrefGoogle Scholar

  • [94]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.CrossrefGoogle Scholar

  • [95]

    Cai YQ, Lan JH, Zhang G, Zhang YW. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.Google Scholar

  • [96]

    Thripuranthaka M, Kashid RV, Rout CS, Late DJ. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 2014, 104, 081911.Google Scholar

  • [97]

    Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012, 37, 1273–1281.CrossrefGoogle Scholar

  • [98]

    Li XB, Maute K, Dunn ML, Yang RG. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 2010, 81, 245318.CrossrefGoogle Scholar

  • [99]

    Wei N, Xu LQ, Wang HQ, Zheng JC. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 2011, 22, 105705.CrossrefGoogle Scholar

  • [100]

    Yang N, Ni XX, Jiang JW, Li BW. How does folding modulate thermal conductivity of graphene? Appl. Phys. Lett. 2012, 100, 093107.CrossrefGoogle Scholar

  • [101]

    Cao AJ, Qu JM. Kapitza conductance of symmetric tilt grain boundaries in graphene. J. Appl. Phys. 2012, 111, 053529.CrossrefGoogle Scholar

  • [102]

    Zhang HJ, Lee G, Cho K. Thermal transport in graphene and effects of vacancy defects. Phys. Rev. B 2011, 84, 115460.CrossrefGoogle Scholar

  • [103]

    Haskins J, Kinaci A, Sevik C, Sevincli H, Cuniberti G, Cagin T. Control of thermal and electronic transport in defect- engineered graphene nanoribbons. ACS Nano 2011, 5, 3779–3787.CrossrefGoogle Scholar

  • [104]

    Hao F, Fang DN, Xu ZP. Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 2011, 99, 041901.CrossrefGoogle Scholar

  • [105]

    Mortazavi B, Rajabpour A, Ahzi S, Remond Y, Allaei SMV. Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun. 2012, 152, 261–264.CrossrefGoogle Scholar

  • [106]

    Zhang HJ, Lee G, Fonseca AF, Borders TL, Cho K. Isotope effect on the thermal conductivity of graphene. J. Nanomater. 2010, 2010, 537657-5.Google Scholar

  • [107]

    Konatham D, Striolo A. Thermal boundary resistance at the graphene-oil interface. Appl. Phys. Lett. 2009, 95, 163105.CrossrefGoogle Scholar

About the article

Yanan Yue

Yanan Yue obtained his bachelor’s and master’s degrees in thermal engineering from Wuhan University, China, in 2007 and 2009, respectively. He obtained his PhD in Mechanical Engineering from Iowa State University in 2011. He joined DOE-Industrial Assessment Center at University of Wisconsin-Milwaukee working as the Manager and the Research Associate in Mechanical Engineering after a short Postdoc research experience at Iowa State University in 2012. In 2013, he joined the faculty of School of Power and Mechanical Engineering at Wuhan University, China. Currently, he is an Associate Professor and the Director of Micro/Nanoscale Thermal Characterization Lab at Wuhan University. His research interests focus on the thermal characterization and energy applications of nanostructured materials.

Jingchao Zhang

Jingchao Zhang received his bachelor’s degree in thermal power engineering from Shandong University in 2010 and his PhD degree in Mechanical Engineering from Iowa State University in 2013. He is now an HPC applications specialist at the University of Nebraska Lincoln. His current research focuses on thermophysical property characterizations of micro/nanoscale materials like graphene, carbon-nanotube, and boron-nitride. Classic molecular dynamics (MD) simulations are performed in his studies on phonon thermal transport in micro and nano domains.

Xiaoduan Tang

Xiaoduan Tang received his Bachelor’s degree in Energy and Power Engineering in 2008, and his Master’s degree in Thermal Engineering in 2010 from Xi’an Jiaotong University, China. In 2013, he obtained his PhD degree in Mechanical Engineering from Iowa State University, USA. Since January 2014, he has been working as an engineer in the Engineering Department of Thrustmaster of Texas, Inc. His research interests include thermal/mechanical characterization and structural analysis.

Shen Xu

Shen Xu received her Bachelor’s degree in Material Science from East China University of Science and Technology, China, in 2008 and her MS in Optics from Fudan University, China, in 2011. Currently, she is a PhD candidate in Micro/Nanoscale Thermal Science Laboratory, Department of Mechanical Engineering, Iowa State University. Her research interests include transient thermal probing technology development based on Raman thermometry and transient electrothermal technique, characterization of cross-plane thermophysical properties of thin films, 2D atomic-layer interface study, protein transformation study with thermal process, and heat transfer in near-field optics.

Xinwei Wang

Xinwei Wang received his BS (1994) and MS degrees (1996) from the Department of Thermal Science and Energy Engineering of University of Science and Technology of China. In 2001, he graduated with a PhD degree from the School of Mechanical Engineering of Purdue University. At present, he is a full professor with the Department of Mechanical Engineering of Iowa State University, and the director of Micro/Nanoscale Thermal Science Laboratory. The current research in his laboratory includes 2D atomic-layer interface energy transport, energy transport in proteins, and new nanoscale thermal probing to achieve atomic-level resolution. He is the inaugural recipient of the Viskanta Fellow of Purdue University in recognition of his independent and innovative research in the field of thermal sciences. He is an associate fellow of AIAA and fellow of ASME.

Corresponding author: Xinwei Wang, Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA, e-mail:

aThese authors contributed equally to this article.

Received: 2014-09-02

Accepted: 2014-12-05

Published Online: 2015-03-05

Published in Print: 2015-12-01

Citation Information: Nanotechnology Reviews, Volume 4, Issue 6, Pages 533–555, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2014-0024.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Cheng Shao, Xiaoxiang Yu, Nuo Yang, Yanan Yue, and Hua Bao
Nanoscale and Microscale Thermophysical Engineering, 2017, Page 1
Yanan Yue, Jingchao Zhang, Yangsu Xie, Wen Chen, and Xinwei Wang
International Journal of Heat and Mass Transfer, 2017, Volume 110, Page 827
Shuyao Si, Wenqing Li, Xiaolong Zhao, Meng Han, Yanan Yue, Wei Wu, Shishang Guo, Xingang Zhang, Zhigao Dai, Xinwei Wang, Xiangheng Xiao, and Changzhong Jiang
Advanced Materials, 2017, Volume 29, Number 3, Page 1604623
Wenqiang Zhao, Wen Chen, Yanan Yue, and Shijing Wu
Applied Thermal Engineering, 2017, Volume 113, Page 481
Jingchao Zhang, Yang Hong, Mengqi Liu, Yanan Yue, Qingang Xiong, and Giulio Lorenzini
International Journal of Heat and Mass Transfer, 2017, Volume 104, Page 871
Changzheng Li, Shen Xu, Yanan Yue, Bing Yang, and Xinwei Wang
Carbon, 2016, Volume 103, Page 101
Jingchao Zhang, Yang Hong, Zhen Tong, Zhihuai Xiao, Hua Bao, and Yanan Yue
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 37, Page 23704

Comments (0)

Please log in or register to comment.
Log in