Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year

IMPACT FACTOR 2016: 1.438
5-year IMPACT FACTOR: 1.892

CiteScore 2016: 1.64

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.514

See all formats and pricing
More options …
Volume 5, Issue 6 (Dec 2016)


A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments

Isiaka A. Adelere / Agbaje Lateef
  • Corresponding author
  • Laboratory of Industrial Microbiology and Nanobiotechnology, Nanotechnology Research Group (NANO), Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria, Phone: +234 8037400520,
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-03 | DOI: https://doi.org/10.1515/ntrev-2016-0024


The green synthesis of nanoparticles has received great attention in recent times owing to its advantages such as cost effectiveness, simplicity, eco-friendliness, biocompatibility, and wide applications over the conventional chemical and physical methods. Various kinds of biomolecules from microorganisms and plants have been successfully utilized for the synthesis of metallic and nonmetallic nanoparticles, and these have been well documented. However, the recent increase in the fabrication of metallic nanoparticles using agro-wastes, enzymes and microbial and plant-derived pigments and their respective areas of applications have not been compiled as a review article. Therefore, the present efforts have been aimed at compilation of reports on the use of these novel bio-resources for the green synthesis of nanoparticles. To the best of our knowledge, this is the first review article on the green synthesis of metallic nanoparticles using diverse agro-wastes, enzymes, and pigments of biological origin. It is envisaged that the compendium will bring to the fore the emerging importance of these bio-resources for nanobiotechnological applications.

Keywords: agro-wastes; enzymes; green synthesis; nanoparticles; pigments


  • [1]

    Lateef A, Ojo SA, Akinwale AS, Azeez L, Gueguim-Kana EB, Beukes LS. Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia 2015, 70, 1295–1306.Google Scholar

  • [2]

    Thunugunta T, Reddy AC, Reddy DC. Green synthesis of nanoparticles: current prospectus. Nanotechnol. Rev. 2015, 4, 303–323.Google Scholar

  • [3]

    Madhumitha G, Roopan SM. Devastated crops: multifunctional efficacy for the production of nanoparticles. J. Nanomater. 2013, Article ID 951858, .CrossrefGoogle Scholar

  • [4]

    Kuppusamy P, Yusoff MM, Maniam GP, Govinda N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm. J. 2016, 24, 473–484.Google Scholar

  • [5]

    Devadiga A, Shetty KV, Saidutta MB. Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int. Nano Lett. 2015, 5, 205–214.Google Scholar

  • [6]

    Gan PP, Ng SH, Huang Y, Li SFY. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour. Technol. 2012, 113, 132–135.Google Scholar

  • [7]

    Basavegowda N, Lee YR. Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Mater. Lett. 2013, 109, 31–33.Google Scholar

  • [8]

    Roopan RG, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crops Prod. 2013, 43, 631–635.Google Scholar

  • [9]

    Malhotra A, Sharma N, Kumar N, Dolma K, Sharma D, Nandanwar HS, Choudhury AR. Multi-analytical approach to understand biomineralization of gold using rice bran: a novel and economical route. RSC Adv. 2014, 4, 39484–39490.Google Scholar

  • [10]

    Harish BS, Uppuluri KB, Anbazhagan V. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydr. Polym. 2015, 132, 104–110.Google Scholar

  • [11]

    Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Ajetomobi FE, Gueguim-Kana EB, Beukes LS. Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoScience 2015, 5, 196–205.Google Scholar

  • [12]

    Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ajibade SE, Ojo SA, Gueguim-Kana EB, Beukes LS. Biogenic synthesis of silver nanoparticles using pod extract of Cola nitida: antibacterial, antioxidant activities and application as additive paint. J. Taibah Univ. Sci. 2015, http://dx.doi.org.10.1016/j.jtusci.2015.10.010.CrossrefGoogle Scholar

  • [13]

    Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ojo SA, Gueguim-Kana EB, Beukes LS. Cocoa pod extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J. Nanostruct. Chem. 2016, 6, 159–169.Google Scholar

  • [14]

    Rangnekar A, Sarma TK, Singh AK, Deka J, Ramesh A, Chattopadhyay A. Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir 2007, 23, 5700–5706.Google Scholar

  • [15]

    Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Ahmad A, Khan MI. Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin. Biotechnol. Appl. Biochem. 2007, 47, 191–195.Google Scholar

  • [16]

    Sanghi R, Verma P, Puri S. Enzymatic formation of gold nanoparticles using Phanerochaete Chrysosporium. Adv. Chem. Eng. Sci. 2011, 1, 154–162.Google Scholar

  • [17]

    Rai T, Panda D. An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol. Chem. Phys. Lett. 2015, 623, 108–112.Google Scholar

  • [18]

    Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 2015, 5, 29–35.Google Scholar

  • [19]

    Lateef A, Adelere IA, Gueguim-Kana EB. Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnol. Biotechnol. Equip. 2015, 29, 54–63.Google Scholar

  • [20]

    Lateef A, Adelere IA, Gueguim-Kana EB. The biology and potential biotechnological applications of Bacillus safensis. Biologia 2015, 70, 411–419.Google Scholar

  • [21]

    Lateef A, Adeeyo AO. Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Not. Sci. Biol. 2015, 7, 405–411.Google Scholar

  • [22]

    Manikprabhu D, Lingappa K. Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J. Pharm. Res. 2013, 6, 255–260.Google Scholar

  • [23]

    Manikprabhu D, Lingappa K. Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33pigment: an antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Mater. Sci. Eng. C 2014, 45, 434–437.Google Scholar

  • [24]

    MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater. Lett. 2012, 74, 8–11.Google Scholar

  • [25]

    Apte M, Girme G, Nair R, Bankar A, Kumar AR, Zinjarde S. Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Mater. Lett. 2013, 95, 149–152.Google Scholar

  • [26]

    Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK. Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J. Saudi Chem. Soc. 2015, 19, 661–666.Google Scholar

  • [27]

    Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. 2015, 5, 112–119.Google Scholar

  • [28]

    Kumar B, Smita K, Angulo Y, Cumbal L. Green synthesis of silver nanoparticles using natural dyes of cochineal. J. Cluster Sci. 2016, 27, 703–713.Google Scholar

  • [29]

    Venil CK, Sathishkumar P, Malathi M, Usha R, Jayakumar R, Yusoff ARM, Ahmad WA. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater. Sci. Eng. C, 2016, 59, 228–234.Google Scholar

  • [30]

    Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem. Res. 2008, 41, 1578–1586.Google Scholar

  • [31]

    Shanmugavadivu M, Kuppusamy S, Ranjithkumar R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv. 2014, 2, 174–182.Google Scholar

  • [32]

    Kumar B, Smita K, Cumbal L, Angulo Y. Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: a sustainable approach. J. Mol. Liquids 2015, 211, 476–480.Google Scholar

  • [33]

    Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C 2014, 41, 17–27.Google Scholar

  • [34]

    Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI. Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater. Lett. 2014, 128, 170–174.Google Scholar

  • [35]

    Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim. Acta Part A. 2012, 90, 173–176.Google Scholar

  • [36]

    Heydari R, Rashidipour M. Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): synthesis and in vitro cytotoxic effect on MCF-7 cells. Int. J. Breast Cancer 2014, Article ID 846743, .CrossrefGoogle Scholar

  • [37]

    Dauthal P, Mukhopadhyay M. Biofabrication, characterization, and possible bio-reduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity. J. Ind. Eng. Chem. 2015, 22, 185–191.Google Scholar

  • [38]

    Krishnaswamy K, Vali H, Orsat V. Value-adding to grape waste: green synthesis of gold nanoparticles. J. Food Eng. 2014, 142, 210–220.Google Scholar

  • [39]

    Nisha SN, Aysha OS, Rahaman JSN, Kumar PV, Valli S, Nirmala P, Reena A. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim. Acta Part A. 2014, 124, 194–198.Google Scholar

  • [40]

    Lakshmipathy R, Reddy BP, Sarada NC, Chidambaram K, Pasha SK. Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl. Nanosci. 2015, 5, 223–228.Google Scholar

  • [41]

    Prasad Ch, Gangadhara S, Venkateswarlu P. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci. 2015, .CrossrefGoogle Scholar

  • [42]

    Velu K, Elumalai D, Hemalatha P, Janaki A, Babu M, Hemavathi M, Kaleena PK. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ. Sci. Poll. Res. Int. Res. 2015, 22, 17769–17779.Google Scholar

  • [43]

    Kanchi S, Kumar G, Lo A, Tseng C, Chen S, Lin C, Chin TT. Exploitation of de-oiled Jatropha waste for gold nanoparticles synthesis: a green approach. Arabian J. Chem. 2014, .CrossrefGoogle Scholar

  • [44]

    Anand K, Gengan RM, Phulukdaree A, Chuturgoon A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem. 2015, 21, 1105–1111.Google Scholar

  • [45]

    Lateef A, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS. Kola nut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J. Cluster Sci. 2016, http://dx.doi.org/10.1007/s10876-016-1019-6.Crossref

  • [46]

    Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC, Choi MM. Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 2010, 82, 177–183.Google Scholar

  • [47]

    Devi PS, Banerjee S, Chowdhury SR, Kumar GS. Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv. 2012, 2, 11578–11585.Google Scholar

  • [48]

    Lateef A, Oloke JK, Gueguim-Kana EB, Oyeniyi SO, Onifade OR, Oyeleye AO, Oladosu OC, Oyelami AO. Improving the quality of agro-wastes by solid state fermentation: enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 2008, 24, 2369–2374.Google Scholar

  • [49]

    Lateef A, Oloke JK, Gueguim-Kana EB, Raimi OR. Production of fructosyltransferase by a local isolate of Aspergillus niger in both submerged and solid substrate media. Acta Aliment. 2012, 41, 100–117.Google Scholar

  • [50]

    Lateef A, Gueguim-Kana EB. Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Rom. Biotechnol. Lett. 2012, 17, 7309–7316.Google Scholar

  • [51]

    Adeoye AO, Lateef A, Gueguim-Kana EB. Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol. 2015, 4, 568–574.Google Scholar

  • [52]

    Gueguim-Kana EB, Oloke JK, Lateef A, Adesiyan MO. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew. Energy 2012, 46, 276–281.Google Scholar

  • [53]

    Ahmad N, Sharma S, Rai R. Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv. Mater. Lett. 2012, 3, 376–380.Google Scholar

  • [54]

    Edison TJI, Sethuraman MG. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim. Acta Part A. 2013, 104, 262–264.Google Scholar

  • [55]

    Velmurugan P, Park J, Lee S, Jang J, Yi Y, Han S, Lee S, Cho K, Cho M, Oh B. Reduction of silver (I) using defatted cashew nut shell starch and its structural comparison with commercial product. Carbohydr. Polym. 2015, 133, 39–45.Google Scholar

  • [56]

    Velmurugan P, Iydroose M, Lee S, Cho M, Park J, Balachandar V, Oh B. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian J. Microbiol. 2014, 54, 196–202.Google Scholar

  • [57]

    Yang N, Li W. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod. 2013, 48, 81–88.Google Scholar

  • [58]

    Huang J, Zhan G, Zheng B, Sun D, Lu F, Lin Y, Chen H, Zheng Z, Zheng Y, Li Q. Biogenic silver nanoparticles by Cacumen platycladi extract: synthesis, formation mechanism, and antibacterial activity. Ind. Eng. Chem. Res. 2011, 50, 9095–9106.Google Scholar

  • [59]

    Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chem. Eng. 2013, 2, 367–376.Google Scholar

  • [60]

    Awad MA, Hendi AA, Ortashi KMO, Elradi DFA, Al-lahieb LA, Al-Otiby SM, Merghani NM, Eisa NE, Awad AAG. Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent. Int. J. Phys. Sci. 2014, 9, 34–40.Google Scholar

  • [61]

    Dauthal P, Mukhopadhyay M. Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation. Korean J. Chem. Eng. 2015, 32, 837–844.Google Scholar

  • [62]

    Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspects 2010, 368, 58–63.Google Scholar

  • [63]

    Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275.Google Scholar

  • [64]

    Kumar B, Smita K, Cumbal L, Debut A. Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. J. Saudi Chem. Soc. 2014, .CrossrefGoogle Scholar

  • [65]

    Vilchis-Nestor AR, Trujillo-Reyes J, Colín-Molina JA, Sánchez-Mendieta V, Avalos-Borja M. Biogenic silver nanoparticles on carbonaceous material from sewage sludge for degradation of methylene blue in aqueous solution. Int. J. Env. Sci. Technol. 2013, 11, 977–986.Google Scholar

  • [66]

    Rupiasih NN, Aher A, Gosavi S, Vidyasagar PB. Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. J. Phy. Conf. Ser. 2013, 423, Article ID 012032, .CrossrefGoogle Scholar

  • [67]

    Apalangya V, Rangari V, Tiimob B, Jeelani S, Samuel T. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl. Surf. Sci. 2014, 295, 108–114.Google Scholar

  • [68]

    Liang M, Su R, Qi W, Yu Y, Wang L, He Z. Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 2014, 49, 1639–1647.Google Scholar

  • [69]

    Yang N, WeiHong L, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater. Lett. 2014, 134, 67–70.Google Scholar

  • [70]

    Patra JK, Baek K. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed. 2015, 10, 7253–7264.Google Scholar

  • [71]

    Mohamed MS, Baliyan A, Veeranarayanan S, Poulose AC, Nagaoka Y. Non-destructive harvesting of biogenic gold nanoparticles from Jatropha curcas seed meal and shell extracts and their application as bio-diagnostic photothermal ablaters-lending shine to the biodiesel byproducts. Nanomater. Environ. 2013, 1, 3–17.Google Scholar

  • [72]

    Bankar A, Joshi B, Kumar AR, Ziniarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B 2010, 80, 45–50.Google Scholar

  • [73]

    Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A. Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf. B: Biointerfaces 2012, 92, 209–212.Google Scholar

  • [74]

    Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi NVV. Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater. Lett. 2013, 100, 241–244.Google Scholar

  • [75]

    Roopan SM, Bharathi A, Prabhakarn A, Abdul Rahuman A, Velayutham K, Rajakumar G, Padmaja RD, Lekshmi M, Madhumitha G. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Mol. Biomol. Spectr. 2012, 98, 86–90.Google Scholar

  • [76]

    Mishra A, Sardar M. Alpha-amylase mediated synthesis of silver nanoparticles. Sci. Adv. Mater. 2012, 4, 143–146.Google Scholar

  • [77]

    Moshfegh M, Forootanfar H, Zare B, Shahverdi AR, Zarrini G, Faramarzi MA. Biological synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by α-amylase. Dig. J. Nanomater. Bios. 2011, 6, 1419–1426.Google Scholar

  • [78]

    Johnson JM, Kinsinger N, Sun C, Li D, Kisailus D. Urease-mediated room-temperature synthesis of nanocrystalline titanium dioxide. J. Am. Chem. Soc. 2012, 134, 13974–13977.Google Scholar

  • [79]

    Khan S, Rizvi SMD, Avaish M, Arshad M, Bagga P, Khan MS. A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Mater. Lett. 2015, 159, 373–376.Google Scholar

  • [80]

    Talekar S, Joshi G, Chougle R, Nainegali B, Desai S, Joshi A, Kambale S, Kamat P, Haripurkar R, Jadhav S, Nadar S. Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate. Catal. Commun. 2014, 53, 62–66.Google Scholar

  • [81]

    Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC. Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@ AgCl) produced by laccase from Trametes versicolor. SpringerPlus 2014, 3, 645.Google Scholar

  • [82]

    Faramarzi MA, Forootanfar H. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf. B: Biointerf. 2011, 87, 23–27.Google Scholar

  • [83]

    Durán M, Silveira CP, Durán N. Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. IET Nanobiotechnol. 2015, 9, 314–323.Google Scholar

  • [84]

    Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 2007, 29, 439–445.Google Scholar

  • [85]

    Raju D, Mendapara R, Mehta UJ. Protein mediated synthesis of Au-Ag bimetallic nanoparticles. Mater. Lett. 2014, 124, 271–274.Google Scholar

  • [86]

    Deepak V, Umamaheshwaran PS, Guhan K, Nanthini RA, Krithiga B, Jaithoon NMH, Gurunathan S. Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf. B: Biointerf. 2011, 86, 353–358.Google Scholar

  • [87]

    Revathi K, Shaifali S, Mohd AK, Suneetha V. A potential strain of keratinolytic bacteria VIT RSAS2 from katpadi and its pharmacological benefits. Int. J. Pharm. Sci. Res. 2013, 20, 89–92.Google Scholar

  • [88]

    Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 2009, 3, 984–994.Google Scholar

  • [89]

    Kumar U, Ranjan AK, Sharan C, Hardikar AA, Pundle A, Poddar P. Green approach towards size controlled synthesis of biocompatible antibacterial metal nanoparticles in aqueous phase using lysozyme. Current Nanosci. 2012, 8, 130–140.Google Scholar

  • [90]

    Sharma B, Mandani S, Sarma TK. Biogenic growth of alloys and core-shell nanostructures using urease as a nanoreactor at ambient conditions. Sci. Rep. 2013, 3, 2601.Google Scholar

  • [91]

    Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 2007, 29, 439–445.Google Scholar

  • [92]

    Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem. 2015, 50, 1076–1085.Google Scholar

  • [93]

    Gupta S, Singh SP, Singh R. Synergistic effect of reductase and keratinase for facile synthesis of protein-coated gold nanoparticles. J. Microbiol. Biotechnol. 2015, 25, 612–619.Google Scholar

  • [94]

    Chinnadayyala SR, Santhosh M, Singh NK, Goswami P. Alcohol oxidase protein mediated in-situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor. Biosensors Bioelectr. 2015, 69, 155–161.Google Scholar

  • [95]

    Venkatpurwar VP, Pokharkar VB. Biosynthesis of gold nanoparticles using therapeutic enzyme: in-vitro and in-vivo efficacy study. J. Biomed. Nanotechnol. 2010, 6, 667–674.Google Scholar

  • [96]

    Mishra A, Sardar M. Alpha amylase mediated synthesis of gold nanoparticles and their application in the reduction of nitroaromatic pollutants. Energy Environ. Focus 2014, 3, 179–184.Google Scholar

  • [97]

    El-Batal AI, ElKenawy NM, Yassin AS, Amin MA. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Rep. 2015, 5, 31–39.Google Scholar

  • [98]

    Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Amer. Chem. Soc. 2002, 124, 12108–12109.Google Scholar

  • [99]

    Dizaj RRT, Gharib-Bibalan F, Mollania N. Biological method for selenium nanoparticles synthesis assisted by α-amylase enzyme from Bacillus methylotrophicus. In 1st Tabriz International Life Science Conference and 12th Iran Biophysical Chemistry Conference. Tabtiz University of Medical Sciences, Iran, 2013, ID 7091.Google Scholar

  • [100]

    De La Rica R, Matsui H. Urease as a nanoreactor for growing crystalline ZnO nanoshells at room temperature. Angew. Chem. Int. 2008, 47, 5415–5417.Google Scholar

  • [101]

    Ahmad R, Mohsin M, Ahmad T, Sardar M. Alpha amylase assisted synthesis of TiO2 nanoparticles: structural characterization and application as antibacterial agents. J. Hazardous Mater. 2015, 283, 171–177.Google Scholar

  • [102]

    Riddin TL, Govender Y, Gericke M, Whiteley CG. Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb. Technol. 2009, 45, 267–273.Google Scholar

  • [103]

    Fierascu I, Bunghez IR, Fierascu RC, Ion RM, Dinu Pîrvu CE, Nuta D. Characterization and antioxidant activity of phytosynthesized silver nanoparticles using Calendula officinalis extract. Farmacia 2014, 62, 129–136.Google Scholar

  • [104]

    Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 2013, 3, 32.Google Scholar

  • [105]

    Manikprabhu D, Lingappa K. Microwave assisted rapid bio-based synthesis of gold nanorods using pigment produced by Streptomyces coelicolor klmp33. Acta Metall. Sin. (Engl. Lett.) 2013, 26, 613–617.Google Scholar

  • [106]

    Egorova EM, Revina AA. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf. A: Physicochem. Eng. Aspects 2000, 168, 87–96.Google Scholar

  • [107]

    Manikprabhu D, Lingappa K. Microwave assisted rapid and green synthesis of silver nanoparticles using a pigment produced by Streptomyces coelicolor klmp33. Bioinorg. Chem. Appl. 2013, .CrossrefGoogle Scholar

  • [108]

    Nair V, Sambre D, Joshi S, Bankar A, Kumar RA, Zinjarde S. Yeast-derived melanin mediated synthesis of gold nanoparticles. J. Bionanosci. 2013, 7, 159–168.Google Scholar

About the article

Isiaka A. Adelere

Isiaka A. Adelere obtained B Tech and M Tech in Microbiology from Ladoke Akintola University of Technology, Ogbomoso, Nigeria in 2008 and 2015, respectively, under the supervision of Prof. A. Lateef. He is an Assistant Lecturer in the Department of Microbiology, Federal University of Technology, Minna, Nigeria, and he has four publications to his credits.

Agbaje Lateef

Agbaje Lateef obtained B Tech in Pure and Applied Biology, M Tech in Biotechnology, and PhD in Microbiology in 1997, 2001 and 2005, respectively. He has 18 years of teaching experience in the University with vast interests in Microbiology and Biotechnology, especially fermentation processes and enzyme technology. He has more than sixty publications to his credits. He is currently involved in the green synthesis of nanoparticles, and he is the Head of Nanotechnology Research Cluster Group (NANO+) in LAUTECH, Ogbomoso, Nigeria. https://scholar.google.com/citations?user=C388_KsAAAAJ&hl=en.

Received: 2016-04-14

Accepted: 2016-05-26

Published Online: 2016-08-03

Published in Print: 2016-12-01

Citation Information: Nanotechnology Reviews, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2016-0024.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Bhagavanth Reddy Gangapuram, Rajkumar Bandi, Ramakrishna Dadigala, Girija Mangathayaru Kotu, and Veerabhadram Guttena
Journal of Cluster Science, 2017
Iyabo Christianah Oladipo, Agbaje Lateef, Joseph Adetunji Elegbede, Musibau Adewuyi Azeez, Tesleem Babatunde Asafa, Taofeek Akangbe Yekeen, Akeem Akinboro, Evariste Bosco Gueguim-Kana, Lorika Selomi Beukes, Tolulope Oluyomi Oluyide, and Oluwatoyin Rebecca Atanda
Journal of Photochemistry and Photobiology B: Biology, 2017, Volume 173, Page 250
Srinivasarao Sunkari, Bhagavanth Reddy Gangapuram, Ramakrishna Dadigala, Rajkumar Bandi, Madhusudhan Alle, and Veerabhadram Guttena
Journal of Analytical Science and Technology, 2017, Volume 8, Number 1
Musibau A. Azeez, Agbaje Lateef, Tesleem B. Asafa, Taofeek A. Yekeen, Akeem Akinboro, Iyabo C. Oladipo, Evariste B. Gueguim-Kana, and Lorika S. Beukes
Journal of Cluster Science, 2017, Volume 28, Number 1, Page 149

Comments (0)

Please log in or register to comment.
Log in