Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year


IMPACT FACTOR 2017: 1.904
5-year IMPACT FACTOR: 1.945

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.544
Source Normalized Impact per Paper (SNIP) 2017: 0.528

Online
ISSN
2191-9097
See all formats and pricing
More options …
Volume 5, Issue 6

Issues

The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles

Agbaje Lateef
  • Corresponding author
  • Laboratory of Industrial Microbiology and Nanobiotechnology, Nanotechnology Research Group (NANO), Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria, e-mail:
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sunday A. Ojo
  • Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joseph A. Elegbede
  • Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-14 | DOI: https://doi.org/10.1515/ntrev-2016-0049

Abstract

Nanotechnology has remained relevant as a multifacet discipline, which cuts across different areas of science and technology. Several successful attempts had been documented regarding the involvement of biological materials in the green synthesis of various metal nanoparticles (MeNPs) because of their eco-friendliness, cost-effectiveness, safe handling, and ultimately less toxicity as opposed to the physical and chemical methods with their concomitant problems. Biological agents, including bacteria, fungi, algae, enzymes, plants, and their extracts, have been implicated in most cases by several authors. Moreover, nanotechnology in recent times has also made an inroad for animal species, specifically arthropods and metabolites thereof to be used as excellent candidates for the green synthesis of MeNPs. The increasing literature on the use of metabolites of arthropods for the green synthesis of nanoparticles has necessitated the need to document a review on their relevance in nanobiotechnology. The review, which represents the first of its kind, seeks to underscore the importance of arthropods in the multidisciplinary subject of nanoscience and nanotechnology.

Keywords: arthropods; green synthesis; nanoparticles; spider; wasp

References

  • [1]

    Cutler B. Arthropod cuticle features and arthropod monophyly. Experientia. 1980, 36, 953.Google Scholar

  • [2]

    Ødegaard F. How many species of arthropods? Erwin’s estimate revised. Biol. J. Linn. Soc. 2000, 71, 583–597.Google Scholar

  • [3]

    Ruppert EE, Fox RS, Barnes RD. Invertebrate Zoology, Seventh ed., Brooks/Cole: Thomson, Belmont, CA, 2004. ISBN: 0-03-025982-7.Google Scholar

  • [4]

    Roy S, Saha S, Pal P. Insect natural product as potential source for alternative medicines – a Review. World Sci. News 2015, 19, 80–94.Google Scholar

  • [5]

    Singh N, Chaudhary A, Abraham J. Susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA) and biological role of silver nanoparticles of honey against MRSA. J. Biol. Active Prod. Nature 2014, 4, 332–342.Google Scholar

  • [6]

    Nam KW, Je KH, Lee JH, Han HJ, Lee HJ, Kang SK, Mar W. Inhibition of COX-2 activity and proinflammatory cytokines (TNF-α and IL-1β) production by water soluble sub-fractionated parts from bee (Apis mellifera) venom. Arch. Pharm. Res. 2003, 26, 383–388.Google Scholar

  • [7]

    Moon DO, Park SY, Heo MS, Kim KC, Park C, Ko WS. Key regulators in bee venom induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through down regulation of ERK and Akt. Int. Immunopharmacol. 2006, 6, 1796–1807.Google Scholar

  • [8]

    Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z. Melittin prevents liver cancer cells metastasis through inhibition of the Rac-1-dependent pathway. Hepatology 2008, 47, 1964–1973.Google Scholar

  • [9]

    Behroozi J, Divsalar A, Saboury AA. Honey bee venom decreases the complications of diabetes by preventing hemoglobin glycation. J. Mol. Liquids 2014, 199, 371–375.Google Scholar

  • [10]

    Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, Lee JD, Choi YH, Kim GY. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol. 2007, 7, 1092–1101.Google Scholar

  • [11]

    Carpes ST, Begnini R, De Alencar SM. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciênc. Agrotec. Lavras 2007, 31, 1818–1825.Google Scholar

  • [12]

    Hood JL, Jallouck AP, Campbell N, Ratner L, Wickline SA. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir. Ther. 2013, 9, 95–103.Google Scholar

  • [13]

    Sherman RA, Hall MJR, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Ann. Rev. Entomol. 2000, 45, 55–81.Google Scholar

  • [14]

    Chambers L, Woodrow S, Brown AP. Degradation of extra cellular matrix components by defined proteinases from the green bottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Brit. J. Dermatol. 2003, 148, 14–23.Google Scholar

  • [15]

    Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azam-buja P. Insect natural products and processes: new treatments for human disease. Insect Biochem. Mol. Biol. 2011, 41, 747–769.Google Scholar

  • [16]

    Bohova J, Majtan J, Takac P. Immunomodulatory properties of medicinal maggots Lucilia sericata in wound healing process. Tang Int. J. Genuine Trad. Med. 2012, 2, 1–7.Google Scholar

  • [17]

    Park SO, Shin JH, Choi WK, Park BS, Oh JS, Jang A. Antibacterial activity of housefly-maggot extracts against MRSA (methicillin-resistant Staphylococcus aureus) and VRE (vancomycin-resistant enterococci). J. Environ. Biol. 2010, 31, 865–871.Google Scholar

  • [18]

    Joyner C, Mills MK, Nayduch D. Pseudomonas aeruginosa in Musca domestica L.: temporospatial examination of bacteria population dynamics and house fly antimicrobial responses. PLoS One 2013, 8, e79224.Google Scholar

  • [19]

    Galvis CEP, Mendez LYV, Kouznetsov VV. Cantharidin-based small molecules as potential therapeutic agents. Chem. Biol. Drug Design 2013, 82, 477–499.Google Scholar

  • [20]

    Chen YJ, Shieh CJ, Tsai TH, Kuo CD, Ho LT, Liu TY, Liao HF. Inhibitory effect of norcantharidin, a derivative compound from blister beetles on tumor invasion and metastasis CT26 colorectal adenocarcinoma cells. Anticancer Drugs 2005, 16, 293–299.Google Scholar

  • [21]

    Efferth T, Rauh R, Kahl S. Molecular modes of action of cantharidines in tumor cells. Biochem. Pharmacol. 2005, 69, 811–818.Google Scholar

  • [22]

    Kok SH, Cheng SJ, Hong CY, Lee JJ, Lin SK, Kuo YS, Chiang CP, Kuo MY. Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett. 2005, 217, 43–52.Google Scholar

  • [23]

    Fan YZ, Fu JY, Zhao, ZM, Chen CQ. Inhibitory effects of norcantharidin on the growth of human gall bladder carcinoma GBC-SD cells in vitro. Hepatobiliary Pancreat. Dis. Int. 2007, 6, 72–80.Google Scholar

  • [24]

    Hill TA, Stewart SG, Sauer B. Heterocyclic substituted cantharidin and norcantharidin analogues-synthesis, protein phosphatase (1 and 2A) inhibition and anti-cancer activity. Bioorg. Med. Chem. Lett. 2007, 17, 3392–3397.Google Scholar

  • [25]

    Liu D, Chen Z. The effects of cantharidin and cantharidin derivatives on tumor cells. Anticancer Agents Med. Chem. 2009, 9, 392–396.Google Scholar

  • [26]

    Dang YJ, Zhu CY. Oral bioavailability of cantharidin-loaded solid lipid nanoparticles. Chinese Med. 2013, 8, 1.Google Scholar

  • [27]

    Li W, Xie L, Chen Z. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell cycle arrest and apoptosis. Cancer Sci. 2010, 101, 1226–1233.Google Scholar

  • [28]

    Wang KR, Zhang W, Yan JX, Li J, Wang R. Antitumor effects, cell selectivity and structure activity relationship of a novel antimicrobial peptide of polybia-MPI. Peptides 2008, 29, 963–968.Google Scholar

  • [29]

    Moreno M, Zurita E, Giralt E. Delivering wasp venom for cancer therapy. J. Controlled Release 2014, 182, 13–21.Google Scholar

  • [30]

    Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 2015, 5, 29–35.Google Scholar

  • [31]

    Lateef A, Adeeyo AO. Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Not. Sci. Biol. 2015, 7, 405–411.Google Scholar

  • [32]

    Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Ajetomobi FE, Gueguim-Kana EB, Beukes LS. Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoSci. 2015, 5, 196–205.Google Scholar

  • [33]

    Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ajibade SE, Ojo SA, Gueguim-Kana EB, Beukes LS. Biogenic synthesis of silver nanoparticles using pod extract of Cola nitida: antibacterial, antioxidant activities and application as additive paint. J. Taibah Univ. Sci. 2016, 10, 551–562.Google Scholar

  • [34]

    Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ojo SA, Gueguim-Kana EB, Beukes LS. Cocoa pod extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J. Nanostruct. Chem. 2016, 6, 159–169.Google Scholar

  • [35]

    Lateef A, Ojo SA, Akinwale AS, Azeez L, Gueguim-Kana EB, Beukes LS. Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia 2015, 70, 1295–1306.Google Scholar

  • [36]

    Lateef A, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS. Kola nut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J. Cluster Sci. 2016, 27, 1561–1577.Google Scholar

  • [37]

    Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS. Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans. NanoBiosci. 2016. Available from: http://dx.doi.org/10.1109/TNB.2016.2559161.Crossref

  • [38]

    Adelere IA Lateef A. Novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes and pigments. Nanotechnol. Rev. 2016, 5, 567–587.Google Scholar

  • [39]

    Lateef A, Adelere IA, Gueguim-Kana EB. The biology and potential biotechnological applications of Bacillus safensis. Biologia 2015, 70, 411–419.Google Scholar

  • [40]

    Thunugunta T, Reddy AC, Reddy DC. Green synthesis of nanoparticles: current prospectus. Nanotechnol. Rev. 2015, 4, 303–323.Google Scholar

  • [41]

    Kuppusamy P, Yusoff MM, Maniam GP, Govinda N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceut. J. 2016, 24, 473–484.Google Scholar

  • [42]

    Sanghi R, Verma P, Puri S. Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv. Chem. Eng. Sci. 2011, 1, 154–162.Google Scholar

  • [43]

    Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Reports 2015, 5, 112–119.Google Scholar

  • [44]

    Wilson EO, Holldobler B. Eusociality: origin and consequences. Proc. Natl. Acad. Sci USA 2005, 102, 13367–13371.Google Scholar

  • [45]

    Wilson EO. The Insect Societies. Harvard University Press: Cambridge, 1971, p. 548, ISBN: 674-45490-1.Google Scholar

  • [46]

    Winston ML. The Biology of the Honey Bee. Harvard University Press; Cambridge, 1987, p. 283, ISBN: 0-674-07409-2.Google Scholar

  • [47]

    Page RE, Peng CY. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 2001, 36, 695–711.Google Scholar

  • [48]

    Witthöft W. Absolute Anzahl und Verteilung der ZellenimHirn der Honigbiene. Z. Morph. Tiere. 1967, 61, 160–184.Google Scholar

  • [49]

    Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV. The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 2001, 410, 930–933.Google Scholar

  • [50]

    Hamilton WD. The genetical evolution of social behaviour II. J. Theor. Biol. 1964, 7, 1–52.Google Scholar

  • [51]

    Hamilton WD. Altruism and related phenomena, mainly in social insects. Ann. Rev. Ecol. Syst. 1972, 3, 193–232.Google Scholar

  • [52]

    Garnery L, Cornuet JM, Solignac M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1992, 1, 145–154.Google Scholar

  • [53]

    Ruttner F. Biogeography and Taxonomy of Honeybees. Springer: Berlin, 1988.Google Scholar

  • [54]

    White Jr., JW. Honey. Adv. Food Res. 1978, 24, 287–374.Google Scholar

  • [55]

    Singh N, Bath PK. Quality evaluation of different types of Indian honey. Food Chem. 1997, 58, 129–133.Google Scholar

  • [56]

    Terrab A, Diez MJ, Heredia FJ. Characterization of moroccan unifloral honeys by their physicochemical characteristics. Food Chem. 2002, 79, 373–379.Google Scholar

  • [57]

    Nanda V, Sarkar BC, Sharma HK, Bawa AS. Physic-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. J. Food Comp. Anal. 2003, 16, 613–619.Google Scholar

  • [58]

    Devillers J, Moriot M, Delegue MHP, Dore JC. Classification of monoflora honeys based on their quality control data. Food Chem. 2004, 86, 305–312.Google Scholar

  • [59]

    Philip D. Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta A. Mol. Biomol. Spectr. 2010, 75, 1078–1081.Google Scholar

  • [60]

    Tonks AJ, Dudley E, Porter NG, Parton J, Brazier J, Smith EL, Tonks A. A 5.8-kDa component of manuka honey stimulates immune cells via TLR4. J. Leukocyte Biol. 2007, 82, 1147–1155.Google Scholar

  • [61]

    Boukraa L, Benbarek H, Moussa A. Synergistic action of starch and honey against Candida albicans in correlation with diastase number. Braz. J. Microbiol. 2008, 39, 40–43.Google Scholar

  • [62]

    Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta A. Mol. Biomol. Spectr. 2009, 73, 650–653.Google Scholar

  • [63]

    El-Deeb NM, El-Sherbiny IM, El-Aassara MR, Hafez EE. Novel trend in colon cancer therapy using silver nanoparticles synthesized by honey bee. J. Nanomed. Nanotechnol. 2015, 6, 2.Google Scholar

  • [64]

    Ali M, Rotte NK, Srikanth VSS. Honey aided solution synthesis of polycrystalline Cu2O particles. Mater. Lett. 2014, 128, 253–255.Google Scholar

  • [65]

    Sreelakshmi C, Datta KKR, Yadav JS, Subba Reddy BV. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J. Nanosci. Nanotechnol. 2011, 11, 6995–7000.Google Scholar

  • [66]

    Obot IB, Umoren SA, Johnson AS. Sunlight-mediated synthesis of silver nanoparticles using honey and its promising anticorrosion potentials for mild steel in acidic environments. J. Mater. Environ. Sci. 2013, 4, 1013–1018.Google Scholar

  • [67]

    Darroudi M, Hoseini SJ, Oskuee RK, Hoseini HA, Gholami L, Gerayli S. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceramics Int. 2014, 40, 7425–7430.Google Scholar

  • [68]

    Reddy SM, Datta KKR, Sreelakshmi C, Eswaramoorthy M, Reddy BV. Honey mediated green synthesis of Pd nanoparticles for suzuki coupling and hydrogenation of conjugated olefins. Nanosci. Nanotechnol. Lett. 2012, 4, 420425.Google Scholar

  • [69]

    Kothai S, Jayanthi B. Ultrasound Intensified green synthesis of silver nanoparticles using Camellia sinensis extract fortified with lemon and honey. Int. J. Chem. Tech. Res. 2014, 6, 248–253.Google Scholar

  • [70]

    Haiza H, Azizan A, Mohidin AH, Halin DSC. Green synthesis of silver nanoparticles using local honey. Nano Hybrids 2013, 4, 87–98.Google Scholar

  • [71]

    Lateef A, Ojo SA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS. Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl. Nanosci.2016, 6, 863–874.Google Scholar

  • [72]

    Lateef A, Akande MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS. Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anti-coagulant and thrombolytic applications. 3Biotech. 2016, 6, 140.Google Scholar

  • [73]

    Wang X, Gao W, Xu S, Xu W. Luminescent fibers: in situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity. Chem. Eng. J. 2012, 210, 585–589.Google Scholar

  • [74]

    Chen W, Wu W, Chen H, Shen Z. Preparation and characterization of noble metal nanocolloids by silk fibroin in situ reduction. Sci. China B. 2003, 46, 330–338.Google Scholar

  • [75]

    Pasricha R, Gupta S, Srivastava AK. A facile and novel synthesis of Ag-Graphene-based nanocomposites. Small 2009, 5, 2253–2259.Google Scholar

  • [76]

    Kharlampieva E, Zimnitsky D, Gupta M, Bergman KN, Kaplan DL, Naik RR, Tsukruk VV. Redox-active ultrathin template of silk fibroin: effect of secondary structure on gold nanoparticle reduction. Chem. Mater. 2009, 21, 2696–2704.Google Scholar

  • [77]

    Su H, Han J, Dong Q, Zhang D, Guo Q. In situ synthesis and photoluminescence of QD-CdS on silk fibroin fibers at room temperature. Nanotechnol. 2007, 19, 025601.Google Scholar

  • [78]

    Wongkrongsak S, Tangthong T, Pasanphan W. Electron beam induced water-soluble silkfibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid. Radiat. Phys. Chem. 2016, 118, 27–34.Google Scholar

  • [79]

    Xia Y. Synthesis of selenium nanoparticles in the presence of silk fibroin. Mater. Lett. 2007, 61, 4321–4324.Google Scholar

  • [80]

    Kumar RM, Rao BL, Asha S, Narayana B, Byrappa K, Wang Y, Yao D, Sangappa Y. Gamma radiation assisted biosynthesis of silver nanoparticles and their characterization. Adv. Mater. Lett. 2015, 6, 1088–1093.Google Scholar

  • [81]

    Das S, Dhar BB. Green synthesis of noble metal nanoparticles using cysteine-modified silk fibroin: catalysis and antibacterial activity. Royal Soc. Chem. Adv. 2014, 4, 46285–46292.Google Scholar

  • [82]

    Fei X, Jia M, Du X, Yang Y, Zhang Y, Shao Z, Zhao X, Chen X. Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules. 2013, 14, 4483–4488.Google Scholar

  • [83]

    Aramwit P, Bang N, Ratanavaraporn J, Ekgasit S. Green synthesis of silk sericin-capped silver nanoparticles and their potent antibacterial activity. Nanoscale Res. Lett. 2014, 9, 79–86.Google Scholar

  • [84]

    Vepari C, Kaplan DL. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007.Google Scholar

  • [85]

    Singh M, Singh S, Prasad S, Gambhir IS. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J. Nanomater. Biostruct. 2008, 3, 115–122.Google Scholar

  • [86]

    Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater. Chem. Phys. 2005, 93, 117–121.Google Scholar

  • [87]

    Ahmed M, Karns MM, Goodson J, Rowe S, Hussain SM, Schlager JJ, Hong Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 2008, 233, 404–410.Google Scholar

  • [88]

    Sriram MI, Barath S, Kanth M, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomed. 2010, 5, 753–762.Google Scholar

  • [89]

    Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006, 7, 657–667.Google Scholar

  • [90]

    Wang L, Liu CH, Nemoto Y, Fukata N, Wu KCW, Yamauchi Y. Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules. RSC Adv. 2012, 2, 4608–4611.Google Scholar

  • [91]

    Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013, 48, 317–324.Google Scholar

  • [92]

    Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol. Rev. 2014, 3, 111–122.Google Scholar

  • [93]

    Skrabalak SE, Chen JY, Sun YG, Lu XM, Au L, Cobley CM, Xia YN. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.Google Scholar

  • [94]

    Wirtz M, Martin CR. Template fabricated gold nanowires and nanotubes. Adv. Mater. 2003, 15, 455–458.Google Scholar

  • [95]

    Sun ST, Wu PY. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets. Phys. Chem. Chem. Phys. 2011, 13, 21116–21120.Google Scholar

  • [96]

    Shao Y, Jin YD, Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Comm. 2004, 7, 1104–1105.Google Scholar

  • [97]

    Au L, Chen YC, Zhou F, Camargo PHC, Lim B, Li ZY, Ginger DS, Xia YN. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449.Google Scholar

  • [98]

    Tang XL, Jiang P, Ge GL, Tsuji M, Xie SS, Guo YJ. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect. Langmuir 2008, 24, 1763–1768.Google Scholar

  • [99]

    Hakkinen H. The gold-sulfur interface at the nanoscale. Nature Chem. 2012, 4, 443–455.Google Scholar

  • [100]

    Lossin A, Westhoff FJ. The production and application of cuprous oxide and cupric hydroxide. JOM. 1997, 49, 38–39.Google Scholar

  • [101]

    Roslyak O, Aparajita U, Birman JL, Mukamel S. Coherent manipulation of quadrupole biexcitons in cuprous oxide by 2D femtosecond spectroscopy. Phys. Status Solidi B 2012, 249, 435–447.Google Scholar

  • [102]

    Venu R, Ramulu TS, Anandakumar S, Rani VS, Kim CG. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf. A. Physicochem. Eng. Aspects. 2011, 384, 733–738.Google Scholar

  • [103]

    Glime JM. Arthropods: arachnida-spider biology. In Bryophyte Ecology, vol. 2, Glime JM, Ed., Bryological 7-2-1 Interaction. E-book sponsored by Michigan Technological University and the International Association of Bryologists: Houghton, Michigan, USA, 2013.Google Scholar

  • [104]

    Denver Museum of Nature and Science. Spider Biology. Available from: http://www.dmns.org/colorado-spider-survey/spider-biology/, 2015, accessed on 1 March, 2015.

  • [105]

    Insect Identification. Available from: http://www.insectidentification.org/spiders.asp, 2015, accessed on 1 March 2015.

  • [106]

    Platnick NI. The World Spider Catalog Version 11.5. Available from: http://research.amnh.org/iz/spiders/catalog, 2011, accessed on 29 March, 2015.

  • [107]

    Craig CL. Evolution of arthropod silks. Ann. Rev. Entomol. 1997, 42, 231–267.Google Scholar

  • [108]

    Blackledge TA, Kuntner M, Agnarsson I. The form and function of spider orb webs: evolution from silk to ecosystems. Adv. Insect Physiol. 2011, 41, 175–262.Google Scholar

  • [109]

    Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541–548.Google Scholar

  • [110]

    Heberstein ME. Spider Behaviour: Flexibility and Versatility. Cambridge University Press: New York, 2011, p. 387, ISBN: 978-0-521-76529-9.Google Scholar

  • [111]

    Simmons AH, Michal CA, Jelinski LW. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 1996, 271, 84–87.Google Scholar

  • [112]

    Papadopoulos P, Ene R, Weidner I, Kremer F. Similarities in the structural organization of major and minor ampullae spider silk. Macromol. Rapid Comm. 2009, 30, 851–857.Google Scholar

  • [113]

    Heimer S. Wunderbare Welt der Spinnen: Urania: Leipzig, Germany, 1988.Google Scholar

  • [114]

    Chakraborty DS. Antibacterial activities of cobweb protein. 19th European Congress of Clinical Microbiology and Infectious Diseases: Helsinki, Finland, 2009, pp. 16–19Google Scholar

  • [115]

    Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL. Functionalized silk biomaterials for bone regeneration. Semana de Engenharia. Guimarães, 11 a 15 de Outubro, 2010), pp. 1–2.Google Scholar

  • [116]

    Higgins LE, Townley MA, Tillinghast EK, Rankin MA. Variation in the chemical composition of orb webs built by the spider Nephila clavipes (Araneae, Tetragnathidae). J. Arachnol. 2001, 29, 82–94.Google Scholar

  • [117]

    Porter D, Vollrath F, Shao Z. Predicting the mechanical properties of spider silk as a model nanostructural polymer. Eur. Phys. J. E. Soft Matter. 2005, 16, 199–206.Google Scholar

  • [118]

    Jackso, RR. Effects of d-amphetamine sulphate and diazepam on thread connection fine structure in a spider’s web. J. Arachnol. 1974, 2, 37–41.Google Scholar

  • [119]

    Allmeling C, Jokuzies A, Reimers K, Kall S, Vogt PM. Use of spider silk fibers as an innovative material in a biocompatible artificial nerve conduit. J. Cellul. Mol. Med. 2006, 10, 770–777.Google Scholar

  • [120]

    Gellynck K. Coconzidje en spirnragweefsel engineering: cocoon and cobwebs in Tissue Engineering. Doctoral Thesis in Biotechnology submitted to Ghent University: Belgium, 2006, pp. 220.Google Scholar

  • [121]

    Roozbahani H, Asmar M, Ghaemi N, Issazadeh K. Evaluation of antimicrobial activity of spider silk Pholcus phalangioides against two bacterial pathogens in food borne. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 2197–2199.Google Scholar

  • [122]

    Hose GC, James JM, Gray MR. Spider webs as environmental indicators. Environ. Poll. 2002, 120, 725–733.Google Scholar

  • [123]

    Ayedun H, Adewole A, Osinfade BG, Ogunlusi RO, Umar BF, Rabiu SA. The use of spider webs for environmental determination of suspended trace metals in industrial and residential areas. J. Environ. Chem. Ecotoxicol. 2013, 5, 21–25.Google Scholar

  • [124]

    Maloney D, Drummond FA, Alford R. Spider predation in agroecosystems: can spiders effectively control pest populations. Tech. Bull. Univ. Maine. 2003, 190, 32, ISSN: 1070.1524. Maine Agricultural and Forest Experiment Station, The University of Maine.Google Scholar

  • [125]

    Novak K. Spider venom helps hearts keep their rhythm. Nature Med. 2001, 7, 155.Google Scholar

  • [126]

    Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802.Google Scholar

  • [127]

    Andrade E, Villanova F, Borra P, Leite K, Troncone L, Cortez I, Messina L, Paranhos M, Claro J, Srougi M. Penile erection induced in vivo by a purified toxin from the Brazilian spider Phoneutria nigriventer. Brit. J. Urol. Int. 2008, 102, 835–837.Google Scholar

  • [128]

    Vendrely C, Scheibel T. Biotechnological production of spider-silk proteins enables new applications. Macromol. Biosci. 2007, 7, 401–409.Google Scholar

  • [129]

    West-Eberhard MJ. Polistes passions. Ann Zool Fenn. 2006, 43, 387–389.Google Scholar

  • [130]

    Sinzato DM, Andrade FR, De Souza AR, Del-Claro K, Prezoto F. Colony cycle, foundation strategy and nesting biology of a Neotropical paper wasp. Rev. Chil. Hist. Nat. 2011, 84, 357–363.Google Scholar

  • [131]

    Nguyen LTP, Kojima JI. Distribution and nests of paper wasps of Polistes (Polistella) in northeastern Vietnam, with description of a new species (Hymenoptera, Vespidae, Polistinae). ZooKeys 2014, 368, 45.Google Scholar

  • [132]

    Wenzel JW. Learning, behaviour programs, and higher-level rules in the nest construction of Polistes. In: Natural History and Evolution of Paper-Wasp, Turillazzi, S and West-Eberhard, MJ, Eds., Oxford University Press: Oxford, 1996, 58–74.Google Scholar

  • [133]

    Clapperton BK, Lo PL. Nesting biology of Asian paper wasps Polistes chinensis antennalis Perez, and Australian paper wasps Polistes humilis (Fabricius) (Hymenoptera, Vespidae) in northern New Zealand. N. Z. J. Zool. 2000, 2, 189–195.Google Scholar

  • [134]

    Evans HE, West-Eberhard MJ. The Wasps. University of Michigan Press: Ann Arbor, 1970, p. 265.Google Scholar

  • [135]

    Singer TL, Espelie KE, Himmelsbach DS. Ultrastructural and chemical examination of paper and pedicel from laboratory and field nests of the social wasp Polistes metricus Say. J. Chem. Ecol. 1992, 18, 77–86.Google Scholar

  • [136]

    Kudô K, Hozumi S, Yamamoto H, Yamane S. Amino acid composition of the protein in preemergence nests of Polistes (Polistes) riparius, and its similarity to the consubgeneric wasp, P. (P.) chinensis (Hymenoptera: Vespidae). J. Ethol. 2000, 18, 75–77.Google Scholar

  • [137]

    Kudô K, Yamamoto H, Yamane S. Amino acid composition of the protein in pre-emergence nests of a paper wasp, Polistes chinensis (Hymenoptera, Vespidae). Insectes Sociaux. 2000, 47, 371–375.Google Scholar

  • [138]

    Turillazzi S, Mastrobuoni G, Dani FR, Moneti G, Pieraccini G, la Marca G, Bartolucci G, Perito B, Lambardi D, Cavallini V, Dapporto L. Dominulin A and B: two new antibacterial peptides identified on the cuticle and in the venom of the social paper wasp Polistes dominulus using MALDI-TOF, MALDI-TOF/TOF, and ESI-ion trap. J. Am. Soc. Mass Spectrometr. 2006, 17, 376–383.Google Scholar

  • [139]

    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003, 24, 401–416.Google Scholar

  • [140]

    Prommuak C, De-Eknamkul W, Shotipruk A. Extraction of flavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts. Separat. Purif. Technol. 2008, 62, 444–448.Google Scholar

  • [141]

    Kojthung A, Meesilpa P, Sudatis B, Treeratanapiboon L, Udomsangpetch R, Oonkhanond B. Effects of gamma radiation on biodegradation of Bombyx mori silk fibroin. Int. Biodeterior. Biodegr. 2008, 62, 487–490.Google Scholar

  • [142]

    Bhat PN, Nivedita S, Roy S. Use of Sericin of Bombyx mori in the synthesis of silver nanoparticles, their characterization and application. Ind. J. Fibre Textile Res. 2011, 36, 168–171.Google Scholar

  • [143]

    Gotoh K, Kanamoto T, Tamada Y. Sulfated fibroin, a novel sulfated peptide derived from silk, inhibits human immunodeficiency virus replication in vitro. Biosci. Biotechnol. Biochem. 2000, 64, 1664–1670.Google Scholar

  • [144]

    Min S, Hu Z. Research on drug absorbing and releasing functions of fibroin and its control. Chin. J. Biomed. Eng. 2002, 21, 361–366.Google Scholar

  • [145]

    Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002, 418, 741.Google Scholar

  • [146]

    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 2001, 54, 139–148.Google Scholar

  • [147]

    Xing T, Hu W, Li S, Chen G. Preparation, structure and properties of multifunctional silk via ATRP method. Appl. Surf. Sci. 2012, 258, 3208–3213.Google Scholar

  • [148]

    Ude AU, Eshkoor RA, Zulkifili R, Ariffin AK, Dzuraidah AW, Azhari CH. Bombyx mori silk fibre and its composite: a review of contemporary developments. Mater. Design 2014, 57, 298–305.Google Scholar

  • [149]

    She Z, Huang Z, Zhang B, Jin C, Feng Q, Xu Y. Preparation and in vitro degradation of porous three-dimensional silkfibroin/chitosan scaffold. Polym. Degradat. Stability 2008, 93, 1316–1322.Google Scholar

  • [150]

    Ali MM, Arumugam SB. Effect of crude extract of Bombyx mori coccoons in hyperlipidemia and atherosclerosis. J. Ayurveda Integrat. Med. 2011, 2, 72–78.Google Scholar

  • [151]

    Zhang X, Geng X, Jiang H, Li J, Huang J. Synthesis and characteristics of chitin and chitosan with the (2-hydroxy-3-trimethylammonium) propyl functionality, and evaluation of their antioxidant activity in vitro. Carbohydr. Polym. 2012, 89, 486–491.Google Scholar

  • [152]

    Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Domínguez H, Núñez MJ, Parajó JC. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171.Google Scholar

  • [153]

    Zhou Y, Chen W, Chujo Y. Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature. Chem. Comm. 2001, 23, 2518–2519.Google Scholar

  • [154]

    Shengjie X, Liu Y, Peiyi W. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl. Mater. Interf. 2013, 5, 654–662.Google Scholar

  • [155]

    Wang X, Yucel T, Lu Q, Hu X, Kaplan DL. Silk nanospheres and microspheres from Silk/PVA blendfilms for drug delivery. Biomaterials 2010, 31, 1025–1035.Google Scholar

  • [156]

    Ritchie CM, Johnsen KR, Kiser JR, Antoku Y, Dickson RM, Petty JT. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C. 2007. 111, 175–181.Google Scholar

  • [157]

    Jin R, Cao Y, Hao E, Metraux GS, Schatz GC, Mirkin CA. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 487–490.Google Scholar

  • [158]

    Jasuja K, Berry V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement. ACS Nano 2009, 3, 2358–2366.Google Scholar

  • [159]

    Izumrudov V, Kharlampieva E, Sukhishvili SA. Multilayers of a globular protein and a weak polyacid: role of polyacid ionization in growth and decomposition in salt solutions. Biomacromolecules 2005, 6, 1782–1788.Google Scholar

  • [160]

    Wang CW, Moffitt MG. Surface-tunable photoluminescence from block-copolymer stabilized cadmium sulfide quantum dots. Langmuir 2004, 20, 11784–11796.Google Scholar

  • [161]

    Yue X, Lin H, Yan T, Zhang D, Lin H, Chen Y. Synthesis of silver nanoparticles with sericin and functional finishing to cotton fabrics. Fibers Polym. 2014, 15, 716–722.Google Scholar

  • [162]

    Lee K, Kweon H, Yeo JH, Woo SO, Lee YW, Cho CS, Kim KH, Park YH. Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin. Int. J. Biol. Macromol. 2003, 33, 75–80.Google Scholar

  • [163]

    Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res. 2006, 341, 2012–2018.Google Scholar

  • [164]

    Socrates G. Infrared and Raman Characteristic Group Frequencies: Table and Chart. Chichester: Wiley, 2000.Google Scholar

  • [165]

    Dong Q, Su H, Zhang D. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J. Phys. Chem. 2005, 109, 17429–17434.Google Scholar

  • [166]

    Rafey A, Shrivastavaa, KBL, Iqbal SA, Khan Z. Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J. Colloid Interf. Sci. 2011, 354, 190–195.Google Scholar

  • [167]

    Song J, Roh J, Lee I, Jang J. Low temperature aqueous phase synthesis of silver/silver chloride plasmonic nanoparticles as visible light photocatalysts. Dalton Trans. 2013, 42, 13897–13904.Google Scholar

About the article

Agbaje Lateef

Agbaje Lateef obtained BTech in Pure and Applied Biology, MTech in Biotechnology, and PhD in Microbiology in 1997, 2001, and 2005, respectively. He has 18 years of teaching experience at the university with vast interests in microbiology and biotechnology, especially fermentation processes and enzyme technology. He has more than 60 publications to his credit. He is currently involved in the green synthesis of nanoparticles, and he is the head of the Nanotechnology Research Group (NANO+) at LAUTECH, Ogbomoso, Nigeria. His articles have enjoyed 695 citations, and he has an h-index of 14. https://scholar.google.com/citations?user=C388_KsAAAAJ&hl=en.

Sunday A. Ojo

Sunday A. Ojo obtained BTech in Microbiology at Ladoke Akintola University of Technology, Ogbomoso, Nigeria, in First Class Division in 2010. He is currently on the MTech program under the supervision of Prof. A. Lateef, with research work focusing on nanobiotechnology. He has nine publications to his credit. https://scholar.google.com/citations?user=prGuXmcAAAAJ&hl=en.

Joseph A. Elegbede

Joseph A. Elegbede obtained BTech in Science Laboratory Technology (Biology/Microbiology option) in 2011 at Ladoke Akintola University of Technology, Ogbomoso, Nigeria. He is currently on MTech program under the supervision of Prof. A. Lateef, with research work focusing on enzyme technology and nanobiotechnology. https://scholar.google.com/citations?user=fctO-eMAAAAJ&hl=en.


Received: 2016-06-22

Accepted: 2016-08-05

Published Online: 2016-10-14

Published in Print: 2016-12-01


Citation Information: Nanotechnology Reviews, Volume 5, Issue 6, Pages 601–622, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2016-0049.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Annu, Shakeel Ahmed, Gurpreet Kaur, Praveen Sharma, Sandeep Singh, and Saiqa Ikram
Journal of Applied Biomedicine, 2018
[3]
Iyabo Christianah Oladipo, Agbaje Lateef, Joseph Adetunji Elegbede, Musibau Adewuyi Azeez, Tesleem Babatunde Asafa, Taofeek Akangbe Yekeen, Akeem Akinboro, Evariste Bosco Gueguim-Kana, Lorika Selomi Beukes, Tolulope Oluyomi Oluyide, and Oluwatoyin Rebecca Atanda
Journal of Photochemistry and Photobiology B: Biology, 2017, Volume 173, Page 250

Comments (0)

Please log in or register to comment.
Log in