Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year


IMPACT FACTOR 2016: 1.438
5-year IMPACT FACTOR: 1.892

CiteScore 2016: 1.64

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.514

Online
ISSN
2191-9097
See all formats and pricing
More options …
Volume 6, Issue 1 (Feb 2017)

Issues

Membrane protein reconstitution in nanodiscs for luminescence spectroscopy studies

Maria E. Zoghbi
  • School of Natural Sciences, University of California, Merced, 4225 N. Hospital Road, Atwater, CA 95301, USA
/ Guillermo A. Altenberg
  • Corresponding author
  • Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6551, USA
  • Email:
Published Online: 2017-01-26 | DOI: https://doi.org/10.1515/ntrev-2016-0078

Abstract

ATP-binding cassette (ABC) exporters transport substrates across biological membranes using ATP hydrolysis by a process that involves switching between inward- and outward-facing conformations. Most of the structural studies of ABC proteins have been performed with proteins in detergent micelles, locked in specific conformations and/or at low temperature. In this article, we present recent data from our laboratories where we studied the prototypical ABC exporter MsbA during ATP hydrolysis, at 37°C, reconstituted in a lipid bilayer. These studies were possible through the use of luminescence resonance energy transfer spectroscopy in MsbA reconstituted in nanodiscs. We found major differences between MsbA in these native-like conditions and in previous studies. These include a separation between the nucleotide-binding domains that was much smaller than previously thought, and a large fraction of molecules with associated nucleotide-binding domains in the nucleotide-free apo state. These studies stress the importance of studying membrane proteins in an environment that approaches physiological conditions.

Keywords: ATP-binding cassette; LRET; luminescence resonance energy transfer; MsbA; multidrug resistance

References

  • [1]

    Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7, 1029–1038.Google Scholar

  • [2]

    Stahlberg H, Fotiadis D, Scheuring S, Remigy H, Braun T, Mitsuoka K, Fujiyoshi Y, Engel A. Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett. 2001, 504, 166–172.Google Scholar

  • [3]

    Patist A, Kanicky JR, Shukla PK, Shah DO. Importance of micellar kinetics in relation to technological processes. J. Colloid Interf. Sci. 2002, 245, 1–15.Google Scholar

  • [4]

    Rues RB, Dotsch V, Bernhard F. Co-translational formation and pharmacological characterization of beta1-adrenergic receptor/nanodisc complexes with different lipid environments. Biochim. Biophys. Acta 2016, 1858, 1306–1316.Google Scholar

  • [5]

    Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 2013, 21, 394–401.Google Scholar

  • [6]

    Soubias O, Gawrisch K. Probing specific lipid-protein interaction by saturation transfer difference NMR spectroscopy. J. Am. Chem. Soc. 2005, 127, 13110–13111.Google Scholar

  • [7]

    Alvis SJ, Williamson IM, East JM, Lee AG. Interactions of anionic phospholipids and phosphatidylethanolamine with the potassium channel KcsA. Biophys. J. 2003, 85, 3828–3838.Google Scholar

  • [8]

    Opekarova M, Tanner W. Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. BBA-Biomembranes 2003, 1610, 11–22.Google Scholar

  • [9]

    Valiyaveetil FI, Zhou YF, Mackinnon R. Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 2002, 41, 10771–10777.Google Scholar

  • [10]

    Mitchell DC, Lawrence JTR, Litman BJ. Primary alcohols modulate the activation of the G protein-coupled receptor rhodopsin by a lipid-mediated mechanism. J. Biol. Chem. 1996, 271, 19033–19036.Google Scholar

  • [11]

    Cantor RS. Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 1999, 76, 2625–2639.Google Scholar

  • [12]

    Brown MF. Curvature forces in membrane lipid-protein interactions. Biochemistry 2012, 51, 9782–9795.Google Scholar

  • [13]

    Andersen OS, Koeppe RE. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 107–130.Google Scholar

  • [14]

    Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature 2009, 459, 379–385.Google Scholar

  • [15]

    Prive GG. Lipopeptide detergents for membrane protein studies. Curr. Opin. Struct. Biol. 2009, 19, 379–385.Google Scholar

  • [16]

    Tribet C, Audebert R, Popot JL. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. U S A 1996, 93, 15047–15050.Google Scholar

  • [17]

    Lee SC, Bennett BC, Hong WX, Fu Y, Baker KA, Marcoux J, Robinson CV, Ward AB, Halpert JR, Stevens RC et al. Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins. Proc. Natl. Acad. Sci. U S A 2013, 110, E1203–E1211.CrossrefGoogle Scholar

  • [18]

    Whiles JA, Deems R, Vold RR, Dennis EA. Bicelles in structure-function studies of membrane-associated proteins. Bioorg. Chem. 2002, 30, 431–442.Google Scholar

  • [19]

    Kahya N. Protein-protein and protein-lipid interactions in domain-assembly: lessons from giant unilamellar vesicles. BBA-Biomembranes 2010, 1798, 1392–1398.Google Scholar

  • [20]

    Rigaud JL, Levy D. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 2003, 372, 65–86.Google Scholar

  • [21]

    Salafsky J, Groves JT, Boxer SG. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry 1996, 35, 14773–14781.Google Scholar

  • [22]

    Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf. Sci. Rep. 2006, 61, 429–444.Google Scholar

  • [23]

    Bayburt TH, Sligar SG. Membrane protein assembly into nanodiscs. FEBS Lett. 2010, 584, 1721–1727.Google Scholar

  • [24]

    Schuler MA, Denisov IG, Sligar SG. Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol. Biol. 2013, 974, 415–433.Google Scholar

  • [25]

    Denisov IG, Sligar SG. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 2016, 23, 481–486.Google Scholar

  • [26]

    Bayburt TH, Grinkova YV, Sligar SG. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2002, 2, 853–856.Google Scholar

  • [27]

    Inagaki S, Ghirlando R, Grisshammer R. Biophysical characterization of membrane proteins in nanodiscs. Methods 2013, 59, 287–300.Google Scholar

  • [28]

    Skar-Gislinge N, Simonsen JB, Mortensen K, Feidenhans’l R, Sligar SG, Lindberg Moller B, Bjornholm T, Arleth L. Elliptical structure of phospholipid bilayer nanodiscs encapsulated by scaffold proteins: casting the roles of the lipids and the protein. J. Am. Chem. Soc. 2010, 132, 13713–13722.Google Scholar

  • [29]

    Hagn F, Etzkorn M, Raschle T, Wagner G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 2013, 135, 1919–1925.Google Scholar

  • [30]

    Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 2009, 464, 211–231.Google Scholar

  • [31]

    Baas BJ, Denisov IG, Sligar SG. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch. Biochem. Biophys. 2004, 430, 218–228.Google Scholar

  • [32]

    Bayburt TH, Grinkova YV, Sligar SG. Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch. Biochem. Biophys. 2006, 450, 215–222.Google Scholar

  • [33]

    Periasamy A, Shadiac N, Amalraj A, Garajova S, Nagarajan Y, Waters S, Mertens HD, Hrmova M. Cell-free protein synthesis of membrane (1,3)-beta-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim. Biophys. Acta 2013, 1828, 743–757.Google Scholar

  • [34]

    Zoghbi ME, Cooper RS, Altenberg GA. The lipid bilayer modulates the structure and function of an ATP-binding cassette exporter. J. Biol. Chem. 2016, 291, 4453–4461.Google Scholar

  • [35]

    Kynde SA, Skar-Gislinge N, Pedersen MC, Midtgaard SR, Simonsen JB, Schweins R, Mortensen K, Arleth L. Small-angle scattering gives direct structural information about a membrane protein inside a lipid environment. Acta Crystallogr D Biol Crystallogr. 2014, 70(Pt 2), 371–383.Google Scholar

  • [36]

    Lyukmanova EN, Shenkarev ZO, Khabibullina NF, Kopeina GS, Shulepko MA, Paramonov AS, Mineev KS, Tikhonov RV, Shingarova LN, Petrovskaya LE et al. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes. Biochim. Biophys. Acta 2012, 1818, 349–358.Google Scholar

  • [37]

    Henrich E, Dotsch V, Bernhard F. Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs. Methods Enzymol. 2015, 556, 351–369.Google Scholar

  • [38]

    Inagaki S, Ghirlando R, White JF, Gvozdenovic-Jeremic J, Northup JK, Grisshammer R. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J. Mol. Biol. 2012, 417(1–2), 95–111.Google Scholar

  • [39]

    Viegas A, Viennet T, Etzkorn M. The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol. Chem. 2016, 397, 1335–1354.Google Scholar

  • [40]

    Rues RB, Henrich E, Boland C, Caffrey M, Bernhard F. Cell-free production of membrane proteins in Escherichia coli lysates for functional and structural studies. Methods Mol. Biol. 2016, 1432, 1–21.Google Scholar

  • [41]

    Midtgaard SR, Pedersen MC, Arleth L. Small-angle X-ray scattering of the cholesterol incorporation into human ApoA1-POPC discoidal particles. Biophys. J. 2015, 109, 308–318.Google Scholar

  • [42]

    Cooper RS, Altenberg GA. Association/dissociation of the nucleotide-binding domains of the ATP-binding cassette protein MsbA measured during continuous hydrolysis. J. Biol. Chem. 2013, 288, 20785–20796.Google Scholar

  • [43]

    Dorr JM, Scheidelaar S, Koorengevel MC, Dominguez JJ, Schafer M, van Walree CA, Killian JA. The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 2016, 45, 3–21.Google Scholar

  • [44]

    Jamshad M, Lin Y-P, Knowles TJ, Parslow RA, Harris C, Wheatley M, Poyner DR, Bill RM, Thomas ORT, Overduin M, Dafforn TR. Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem. Soc. Trans. 2011, 39, 813–818.Google Scholar

  • [45]

    Knowles TJ, Finka R, Smith C, Lin Y-P, Dafforn T, Overduin M. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 2009, 131, 7484–7485.Google Scholar

  • [46]

    Nath A, Atkins WM, Sligar SG. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 2007, 46, 2059–2069.Google Scholar

  • [47]

    Leitz AJ, Bayburt TH, Barnakov AN, Springer BA, Sligar SG. Functional reconstitution of beta2-adrenergic receptors utilizing self-assembling nanodisc technology. Biotechniques 2006, 40, 601–602, 604, 606.Google Scholar

  • [48]

    Brewer KD, Li W, Horne BE, Rizo J. Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation. Proc. Natl. Acad. Sci. U S A 2011, 108, 12723–12728.CrossrefGoogle Scholar

  • [49]

    Milne JL, Borgnia MJ, Bartesaghi A, Tran EE, Earl LA, Schauder DM, Lengyel J, Pierson J, Patwardhan A, Subramaniam S. Cryo-electron microscopy—a primer for the non-microscopist. FEBS J. 2013, 280, 28–45.Google Scholar

  • [50]

    Gao Y, Cao E, Julius D, Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 2016, 534, 347–351.Google Scholar

  • [51]

    Al-Shawi MK. Catalytic and transport cycles of ABC exporters. Essays Biochem. 2011, 50, 63–83.Google Scholar

  • [52]

    Bouige P, Laurent D, Piloyan L, Dassa E. Phylogenetic and functional classification of ATP-binding cassette (ABC) systems. Curr. Protein Pept. Sci. 2002, 3, 541–559.Google Scholar

  • [53]

    Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008, 9, 105–127.Google Scholar

  • [54]

    Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 2002, 10, 139–149.Google Scholar

  • [55]

    Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 2000, 101, 789–800.Google Scholar

  • [56]

    Zoghbi ME, Altenberg GA. ATP binding to two sites is necessary for dimerization of nucleotide-binding domains of ABC proteins. Biochem. Biophys. Res. Commun. 2014, 443, 97–102.Google Scholar

  • [57]

    Zoghbi ME, Altenberg GA. Hydrolysis at one of the two nucleotide-binding sites drives the dissociation of ATP-binding cassette nucleotide-binding domain dimers. J. Biol. Chem. 2013, 288, 34259–34265.Google Scholar

  • [58]

    Eckford PD, Sharom FJ. The reconstituted Escherichia coli MsbA protein displays lipid flippase activity. Biochem. J. 2010, 429, 195–203.Google Scholar

  • [59]

    Siarheyeva A, Sharom FJ. The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem. J. 2009, 419, 317–328.Google Scholar

  • [60]

    Eckford PD, Sharom FJ. Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J. Biol. Chem. 2008, 283, 12840–12850.Google Scholar

  • [61]

    Schultz KM, Merten JA, Klug CS. Effects of the L511P and D512G mutations on the Escherichia coli ABC transporter MsbA. Biochemistry 2011, 50, 2594–2602.Google Scholar

  • [62]

    Schultz KM, Merten JA, Klug CS. Characterization of the E506Q and H537A dysfunctional mutants in the E. coli ABC transporter MsbA. Biochemistry 2011, 50, 3599–3608.Google Scholar

  • [63]

    Westfahl KM, Merten JA, Buchaklian AH, Klug CS. Functionally important ATP binding and hydrolysis sites in Escherichia coli MsbA. Biochemistry 2008, 47, 13878–13886.Google Scholar

  • [64]

    Buchaklian AH, Klug CS. Characterization of the LSGGQ and H motifs from the Escherichia coli lipid A transporter MsbA. Biochemistry 2006, 45, 12539–12546.Google Scholar

  • [65]

    Buchaklian AH, Klug CS. Characterization of the Walker A motif of MsbA using site-directed spin labeling electron paramagnetic resonance spectroscopy. Biochemistry 2005, 44, 5503–5509.Google Scholar

  • [66]

    Mishra S, Verhalen B, Stein RA, Wen PC, Tajkhorshid E, McHaourab HS. Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. Elife 2014, 3, e02740.Google Scholar

  • [67]

    Zou P, McHaourab HS. Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron-electron resonance and nanoscale bilayers. Biophys. J. 2010, 98, L18–20.Google Scholar

  • [68]

    Zou P, McHaourab HS. Alternating access of the putative substrate-binding chamber in the ABC transporter MsbA. J. Mol. Biol. 2009, 393, 574–585.Google Scholar

  • [69]

    Zou P, Bortolus M, McHaourab HS. Conformational cycle of the ABC transporter MsbA in liposomes: detailed analysis using double electron-electron resonance spectroscopy. J. Mol. Biol. 2009, 393, 586–597.Google Scholar

  • [70]

    King G, Sharom FJ. Proteins that bind and move lipids: MsbA and NPC1. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 75–95.Google Scholar

  • [71]

    Doerrler WT, Gibbons HS, Raetz CR. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J. Biol. Chem. 2004, 279, 45102–45109.Google Scholar

  • [72]

    Doerrler WT, Raetz CR. ATPase activity of the MsbA lipid flippase of Escherichia coli. J. Biol. Chem. 2002, 277, 36697–36705.Google Scholar

  • [73]

    Wang X, Quinn PJ, Yan A. Kdo2-lipid A: structural diversity and impact on immunopharmacology. Biol. Rev. Camb. Philos. Soc. 2015, 90, 408–427.Google Scholar

  • [74]

    Gutmann DA, Ward A, Urbatsch IL, Chang G, van Veen HW. Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem. Sci. 2010, 35, 36–42.Google Scholar

  • [75]

    Hughes JR. One of the hottest topics in epileptology: ABC proteins. Their inhibition may be the future for patients with intractable seizures. Neurol. Res. 2008, 30, 920–925.Google Scholar

  • [76]

    Gimenez F, Fernandez C, Mabondzo A. Transport of HIV protease inhibitors through the blood-brain barrier and interactions with the efflux proteins, P-glycoprotein and multidrug resistance proteins. J. Acquir. Immune Defic. Syndr. 2004, 36, 649–658.Google Scholar

  • [77]

    Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol. Rev. 2006, 58, 244–258.Google Scholar

  • [78]

    Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 1999, 36(2–3), 179–194.Google Scholar

  • [79]

    International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010, 9, 215–236.Google Scholar

  • [80]

    U.S. Department of Health and Human Services, Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for industry. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf.

  • [81]

    Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009, 323, 1718–1722.Google Scholar

  • [82]

    Ward A, Reyes CL, Yu J, Roth CB, Chang G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl. Acad. Sci. U S A 2007, 104, 19005–19010.CrossrefGoogle Scholar

  • [83]

    Li J, Jaimes KF, Aller SG. Refined structures of mouse P-glycoprotein. Protein Sci. 2014, 23, 34–46.Google Scholar

  • [84]

    Lee JY, Urbatsch IL, Senior AE, Wilkens S. Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy. J. Biol. Chem. 2008, 283, 5769–5779.Google Scholar

  • [85]

    George AM, Jones PM. An asymmetric post-hydrolysis state of the ABC transporter ATPase dimer. PLoS One 2013, 8, e59854.Google Scholar

  • [86]

    Jones PM, O’Mara ML, George AM. ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem. Sci. 2009, 34, 520–531.Google Scholar

  • [87]

    Jones PM, George AM. Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins 2009, 75, 387–396.Google Scholar

  • [88]

    Verhalen B, Ernst S, Borsch M, Wilkens S. Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J. Biol. Chem. 2012, 287, 1112–1127.Google Scholar

  • [89]

    Zoghbi ME, Krishnan S, Altenberg GA. Dissociation of ATP-binding cassette nucleotide-binding domain dimers into monomers during the hydrolysis cycle. J. Biol. Chem. 2012, 287, 14994–15000.Google Scholar

  • [90]

    Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 2005, 436, 848–851.Google Scholar

  • [91]

    Selvin PR. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 275–302.Google Scholar

  • [92]

    Zoghbi ME, Fuson KL, Sutton RB, Altenberg GA. Kinetics of the association/dissociation cycle of an ATP-binding cassette nucleotide-binding domain. J. Biol. Chem. 2012, 287, 4157–4164.Google Scholar

  • [93]

    Bao X, Lee SC, Reuss L, Altenberg GA. Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc. Natl. Acad. Sci. U S A 2007, 104, 4919–4924.CrossrefGoogle Scholar

  • [94]

    Ge P, Selvin PR. Thiol-reactive luminescent lanthanide chelates: Part 2. Bioconjug. Chem. 2003, 14, 870–876.Google Scholar

  • [95]

    Posson DJ, Selvin PR. Extent of voltage sensor movement during gating of shaker K+ channels. Neuron 2008, 59, 98–109.Google Scholar

  • [96]

    Hyde HC, Sandtner W, Vargas E, Dagcan AT, Robertson JL, Roux B, Correa AM, Bezanilla F. Nano-positioning system for structural analysis of functional homomeric proteins in multiple conformations. Structure 2012, 20, 1629–1640.Google Scholar

  • [97]

    Muschielok A, Andrecka J, Jawhari A, Bruckner F, Cramer P, Michaelis J. A nano-positioning system for macromolecular structural analysis. Nat. Methods 2008, 5, 965–971.Google Scholar

  • [98]

    Muschielok A, Michaelis J. Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. J. Phys. Chem. B 2011, 115, 11927–11937.Google Scholar

  • [99]

    Barthelmes K, Reynolds AM, Peisach E, Jonker HR, DeNunzio NJ, Allen KN, Imperiali B, Schwalbe H. Engineering encodable lanthanide-binding tags into loop regions of proteins. J. Am. Chem. Soc. 2011, 133, 808–819.Google Scholar

  • [100]

    Nitz M, Franz KJ, Maglathlin RL, Imperiali B. A powerful combinatorial screen to identify high-affinity terbium(III)-binding peptides. Chembiochem 2003, 4, 272–276.Google Scholar

  • [101]

    Sandtner W, Bezanilla F, Correa AM. In vivo measurement of intramolecular distances using genetically encoded reporters. Biophys. J. 2007, 93, L45–47.Google Scholar

  • [102]

    Sandtner W, Egwolf B, Khalili-Araghi F, Sanchez-Rodriguez JE, Roux B, Bezanilla F, Holmgren M. Ouabain binding site in a functioning Na+/K+ ATPase. J. Biol. Chem. 2011, 286, 38177–38183.Google Scholar

  • [103]

    Castillo JP, Sanchez-Rodriguez JE, Hyde HC, Zaelzer CA, Aguayo D, Sepulveda RV, Luk LY, Kent SB, Gonzalez-Nilo FD, Bezanilla F, et al. Beta1-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel. Proc. Natl. Acad. Sci. U S A 2016, 113, E3231–3239.Google Scholar

  • [104]

    Kawai T, Caaveiro JM, Abe R, Katagiri T, Tsumoto K. Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Lett. 2011, 585, 3533–3537.Google Scholar

  • [105]

    Siemiarczuk A, Wagner BD, Ware WR. Comparison of the maximum entropy and exponential series methods for the recovery of distributions of lifetimes from fluorescence lifetime data. J. Phys. Chem. 1990, 94, 1661–1666.Google Scholar

  • [106]

    James DR, Ware WR. Recovery of underlying distributions of lifetimes from fluorescence decay data. Chem. Phys. Lett. 1986, 126, 7–11.Google Scholar

About the article

Maria E. Zoghbi

Maria E. Zoghbi is an Assistant Professor in the Department of Natural Sciences at the University of California, Merced, CA, USA. She was born in Venezuela, where she studied biology at the Central University of Venezuela, and received her PhD degree from the Venezuelan Institute for Scientific Research. She joined Roger Craig’s laboratory at University of Massachusetts Medical School in 2001 for her doctoral thesis and first postdoctoral position. Between 2007 and 2016, she was a senior postdoctoral associate in Guillermo Altenberg’s laboratory at Texas Tech University Health Sciences Center. Her main research interest is to understand the function of proteins, especially membrane proteins, from a biochemical and structural perspective.

Guillermo A. Altenberg

Guillermo A. Altenberg has been the head of the Department of Cell Physiology and Molecular Biophysics at Texas Tech University Health Sciences Center, Lubbock, TX, USA since 2014. He received his MD degree from the School of Medicine of the University of Buenos Aires in Argentina, and his PhD degree from the same university in 1987, working in the Institute for Cardiological Research. He has spent most of his academic career as faculty in the School of Medicine of The University of Texas Medical Branch at Galveston, and has been at Texas Tech University Health Sciences Center since 2007. His research interest is the structure-function of membrane transport proteins, with a focus on spectroscopy and nanotechnology applications.


Received: 2016-09-06

Accepted: 2016-11-02

Published Online: 2017-01-26

Published in Print: 2017-02-01


Citation Information: Nanotechnology Reviews, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2016-0078.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in