Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year

IMPACT FACTOR 2016: 1.438
5-year IMPACT FACTOR: 1.892

CiteScore 2016: 1.64

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.514

See all formats and pricing
More options …
Volume 6, Issue 1


Proteoliposomes – a system to study membrane proteins under buffer gradients by cryo-EM

Kushal Sejwal
  • Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel 4056, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed Chami
  • Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel 4056, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul Baumgartner
  • Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel 4056, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia Kowal
  • Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel 4056, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shirley A. Müller
  • Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel 4056, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henning StahlbergORCID iD: http://orcid.org/0000-0002-1185-4592
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/ntrev-2016-0081


Membrane proteins are vital to life and major therapeutic targets. Yet, understanding how they function is limited by a lack of structural information. In biological cells, membrane proteins reside in lipidic membranes and typically experience different buffer conditions on both sides of the membrane or even electric potentials and transmembrane gradients across the membranes. Proteoliposomes, which are lipidic vesicles filled with reconstituted membrane proteins, provide an ideal model system for structural and functional studies of membrane proteins under conditions that mimic nature to a certain degree. We discuss methods for the formation of liposomes and proteoliposomes, their imaging by cryo-electron microscopy, and the structural analysis of proteins present in their bilayer. We suggest the formation of ordered arrays akin to weakly ordered two-dimensional (2D) crystals in the bilayer of liposomes as a means to achieve high-resolution, and subsequent buffer modification as a method to capture snapshots of membrane proteins in action.

Keywords: buffer gradient; cryo-electron microscopy; image processing; membrane proteins; proteoliposomes


  • [1]

    Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim. Biophys. Acta Biomembranes 2006, 1758, 1633–1640.Google Scholar

  • [2]

    Cipolla D, Wu H, Salentinig S, Boyd B, Rades T, Vanhecke D, Petri-Fink A, Rothin-Rutishauser B, Eastman S, Redelmeier T, Gonda I, Chan HK. Formation of drug nanocrystals under nanoconfinement afforded by liposomes. RSC Adv. 2016, 6, 6223–6233.Google Scholar

  • [3]

    Chatin B, Mével M, Devallière J, Dallet L, Haudebourg T, Peuziat P, Colombani T, Berchel M, Lambert O, Edelman A, Pitard B. Liposome-based formulation for intracellular delivery of functional proteins. Mol. Ther. Nucleic Acids 2015, 4, e244.CrossrefGoogle Scholar

  • [4]

    Forster V, Signorell RD, Roveri M, Leroux JC. Liposome-supported peritoneal dialysis for detoxification of drugs and endogenous metabolites. Sci. Translational Med. 2014, 6, 258ra141.Google Scholar

  • [5]

    Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 2016, 6, 1336–1352.Google Scholar

  • [6]

    Liu Q, Boyd BJ. Liposomes in biosensors. Analyst 2013, 138, 391–409.Google Scholar

  • [7]

    Chen C, Wang Q. Liposome-based nanosensors for biological detection. Am. J. Nano Res. Appl. 2015, 3, 13–17.Google Scholar

  • [8]

    Yamashita Y, Oka M, Tanaka T, Yamazaki M. A new method for the preparation of giant liposomes in high salt concentrations and growth of protein microcrystals in them. Biochim. Biophys. Acta 2002, 1561, 129–134.Google Scholar

  • [9]

    de Souza TP, Fahr A, Luisi PL, Stano P. Spontaneous encapsulation and concentration of biological macromolecules in liposomes: an intriguing phenomenon and its relevance in origins of life. J. Mol. Evol. 2014, 79, 179–192.Google Scholar

  • [10]

    Cullis PR, Bally MB, Madden TD, Mayer LD, Hope MJ. pH gradients and membrane transport in liposomal systems. Trends Biotechnol. 1991, 9, 268–272.Google Scholar

  • [11]

    D’Aguanno E, Altamura E, Mavelli F, Fahr A, Stano P, Luisi PL. Physical routes to primitive cells: an experimental model based on the spontaneous entrapment of enzymes inside micrometer-sized liposomes. Life 2015, 5, 969–996.Google Scholar

  • [12]

    Rigaud JL, Levy D. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 2003, 372, 65–86.Google Scholar

  • [13]

    Wang L, Tonggu L. Membrane protein reconstitution for functional and structural studies. Sci. China Life Sci. 2015, 58, 66–74.Google Scholar

  • [14]

    Mosser G. Two-dimensional crystallogenesis of transmembrane proteins. Micron (Oxford, England: 1993) 2001, 32, 517–540.Google Scholar

  • [15]

    Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes. FEBS Lett. 2014, 588, 2774–2781.Google Scholar

  • [16]

    Rémigy HW, Caujolle-Bert D, Suda K, Schenk A, Chami M, Engel A. Membrane protein reconstitution and crystallization by controlled dilution. FEBS Lett. 2003, 555, 160–169.Google Scholar

  • [17]

    Simeonov P, Werner S, Haupt C, Tanabe M, Bacia K. Membrane protein reconstitution into liposomes guided by dual-color fluorescence cross-correlation spectroscopy. Biophys. Chem. 2013, 184, 37–43.Google Scholar

  • [18]

    Rajendra J, Damianoglou A, Hicks M, Booth P, Rodger PM, Rodger A. Quantitation of protein orientation in flow-oriented unilamellar liposomes by linear dichroism. Chem. Phys. 2006, 326, 210–220.Google Scholar

  • [19]

    Islam ST, Eckford PD, Jones ML, Nugent T, Bear CE, Vogel C, Lam JS. Proton-dependent gating and proton uptake by Wzx support O-antigen-subunit antiport across the bacterial inner membrane. MBio 2013, 4, e00678–00613.Google Scholar

  • [20]

    Tunuguntla R, Bangar M, Kim K, Stroeve P, Ajo-Franklin CM, Noy A. Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes. Biophys. J. 2013, 105, 1388–1396.Google Scholar

  • [21]

    Neves P, Lopes SC, Sousa I, Garcia S, Eaton P, Gameiro P. Characterization of membrane protein reconstitution in LUVs of different lipid composition by fluorescence anisotropy. J. Pharm. Biomed. Anal. 2009, 49, 276–281.Google Scholar

  • [22]

    Dezi M, Di Cicco A, Bassereau P, Levy D. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents. Proc. Natl Acad. Sci. USA 2013, 110, 7276–7281.Google Scholar

  • [23]

    Rigaud JL. Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals. Brazilian J. Med. Biol. Res. 2002, 35, 753–766.Google Scholar

  • [24]

    Das BB, Lu GJ, Son WS, Tian Y, Marassi FM, Opella SJ. Structure determination of a membrane protein in proteoliposomes. J. Am. Chem. Soc. 2012, 134, 2047–2056.Google Scholar

  • [25]

    Almgren M, Edwards K, Karlsson G. Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf. A 2000, 174, 3–21.Google Scholar

  • [26]

    Egerdie B, Singer M. Morphology of gel state phosphatidylethanolamine and phosphatidylcholine liposomes: a negative stain electron microscopic study. Chem. Phys. Lipids 1982, 31, 75–85.Google Scholar

  • [27]

    Thompson AK, Mozafari MR, Singh H. The properties of liposomes produced from milk fat globule membrane material using different techniques. Lait 2007, 87, 349–360.Google Scholar

  • [28]

    Stokes DL, Rice WJ, Hu M, Kim C, Ubarretxena I. Two-dimensional crystallization of integral membrane proteins for electron crystallography. Methods Mol. Biol. (Clifton, N.J.) 2010, 654, 187–205.Google Scholar

  • [29]

    Vink M, Derr K, Love J, Stokes DL, Ubarretxena-Belandia I. A high-throughput strategy to screen 2D crystallization trials of membrane proteins. J. Struct. Biol. 2007, 160, 295–304.Google Scholar

  • [30]

    Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 2005, 438, 633–638.Google Scholar

  • [31]

    Walz T, Smith BL, Zeidel ML, Engel A, Agre P. Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 1994, 269, 1583–1586.Google Scholar

  • [32]

    Ohsawa T, Miura H, Harada K. Studies on the effect of water-soluble additives and on the encapsulation mechanism in liposome preparation by the freeze-thawing method. Chem. Pharm. Bull. 1985, 33, 5474–5483.Google Scholar

  • [33]

    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 1988, 21, 129–228.Google Scholar

  • [34]

    Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science (New York, N.Y.) 2002, 298, 1209–1213.Google Scholar

  • [35]

    Bonnaud C, Monnier CA, Demurtas D, Jud C, Vanhecke D, Montet X, Hovius R, Lattuada M, Rothen-Rutishauser B, Petri-Fink A. Insertion of nanoparticle clusters into vesicle bilayers. ACS Nano 2014, 8, 3451–3460.Google Scholar

  • [36]

    Rangelov S, Edwards K, Almgren M, Karlsson G. Steric stabilization of egg-phosphatidylcholine liposomes by copolymers bearing short blocks of lipid-mimetic units. Langmuir ACS J. Surf. Colloids 2003, 19, 172–181.Google Scholar

  • [37]

    Le Bihan O, Bonnafous P, Marak L, Bickel T, Trépout S, Mornet S, De Haas F, Talbot H, Taveau JC, Lambert O. Cryo-electron tomography of nanoparticle transmigration into liposome. J. Struct. Biol. 2009, 168, 419–425.Google Scholar

  • [38]

    Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016, 35, 1766–1778.Google Scholar

  • [39]

    Zhang M, Charles R, Tong H, Zhang L, Patel M, Wang F, Rames MJ, Ren A, Rye KA, Qiu X, Johns DG, Charles MA, Ren G. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation. Sci. Rep. 2015, 5, 8741.Google Scholar

  • [40]

    Fox CB, Mulligan SK, Sung J, Dowling QM, Fung HW, Vedvick TS, Coler RN. Cryogenic transmission electron microscopy of recombinant tuberculosis vaccine antigen with anionic liposomes reveals formation of flattened liposomes. Int. J. Nanomed. 2014, 9, 1367–1377.Google Scholar

  • [41]

    Milanesi L, Sheynis T, Xue WF, Orlova EV, Hellewell AL, Jelinek R, Hewitt EW, Radford SE, Saibil HR. Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proc. Natl. Acad. Sci. USA 2012, 109, 20455–20460.Google Scholar

  • [42]

    Stewart PL. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. Wiley interdisciplinary reviews. Nanomed. Nanobiotechnol. 2016, in press.Google Scholar

  • [43]

    Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L. Prediction of the human membrane proteome. Proteomics 2010, 10, 1141–1149.Google Scholar

  • [44]

    Fontanesi F. 2015. Mitochondria: structure and role in respiration. eLS. 1–13. DOI: 10.1002/9780470015902.a0001380.pub2CrossrefGoogle Scholar

  • [45]

    Goni FM. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim. Biophys. Acta 2014, 1838, 1467–1476.Google Scholar

  • [46]

    Arinaminpathy Y, Khurana E, Engelman DM, Gerstein MB. Computational analysis of membrane proteins: the largest class of drug targets. Drug Discovery Today 2009, 14, 1130–1135.Google Scholar

  • [47]

    Renault L, Chou HT, Chiu PL, Hill RM, Zeng X, Gipson B, Zhang ZY, Cheng A, Unger V, Stahlberg H. Milestones in electron crystallography. J. Comput. Aided Mol. Des. 2006, 20, 519–527.Google Scholar

  • [48]

    Abe K, Fujiyoshi Y. Cryo-electron microscopy for structure analyses of membrane proteins in the lipid bilayer. Curr. Opin. Struct. Biol. 2016, 39, 71–78.Google Scholar

  • [49]

    Stahlberg H, Biyani N, Engel A. 3D reconstruction of two-dimensional crystals. Arch. Biochem. Biophys. 2015, 581, 68–77.Google Scholar

  • [50]

    Banerjee RK, Datta AG. Proteoliposome as the model for the study of membrane-bound enzymes and transport proteins. Mol. Cell Biochem. 1983, 50, 3–15.Google Scholar

  • [51]

    Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature 2009, 459, 379–385.Google Scholar

  • [52]

    Pekker M, Shneider MN. The surface charge of a cell lipid membrane. ArXiv e-prints 2014, arXiv:1401.4707.Google Scholar

  • [53]

    Bezanilla F. How membrane proteins sense voltage. Nat. Rev. Mol. Cell Biol. 2008, 9, 323–332.Google Scholar

  • [54]

    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102–102.Google Scholar

  • [55]

    Huang Y, Hemmer E, Rosei F, Vetrone F. Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs. J. Phys. Chem. B 2016, 120, 4992–5001.Google Scholar

  • [56]

    Yu B, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods Enzymol. 2009, 465, 129–141.Google Scholar

  • [57]

    Craig LC, Gregory JD, Hausmann W. Versatile laboratory concentration device. Anal. Chem. 1950, 22, 1462.Google Scholar

  • [58]

    Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta Biomembranes 1986, 858, 161–168.Google Scholar

  • [59]

    MacDonald RC, MacDonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu L-r. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta Biomembranes 1991, 1061, 297–303.Google Scholar

  • [60]

    Hinna A, Steiniger F, Hupfeld S, Stein P, Kuntsche J, Brandl M. Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters. J. Liposome Res. 2016, 26, 11–20.Google Scholar

  • [61]

    Mui B, Chow L, Hope MJ. Extrusion technique to generate liposomes of defined size. Methods Enzymol. 2003, 367, 3–14.Google Scholar

  • [62]

    Colletier J-P, Chaize B, Winterhalter M, Fournier D. Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2002, 2, 9.Google Scholar

  • [63]

    Schwille P. Giant unilamellar vesicles: from minimal membrane systems to minimal cells? In The Minimal Cell: The Biophysics of Cell Compartment and the Origin of Cell Functionality (eds Luisi LP, Stano P). Springer, Netherlands, 2011.Google Scholar

  • [64]

    Morales-Penningston NF, Wu J, Farkas ER, Goh SL, Konyakhina TM, Zheng JY, Webb WW, Feigenson GW. GUV preparation and imaging: minimizing artifacts. Biochim. Biophys. Acta 2010, 1798, 1324–1332.Google Scholar

  • [65]

    Stockbridge RB, Tsai MF. Lipid reconstitution and recording of recombinant ion channels. Methods Enzymol. 2015, 556, 385–404.Google Scholar

  • [66]

    Kühlbrandt W. Two-dimensional crystallization of membrane proteins: a practical guide. In: Membrane protein purification and crystallization: a practical guide, Hunte, C., Jagow, G. von, Schägger, H. eds., 2nd edition, Academic Press: San Diego, 2003, 253–284.Google Scholar

  • [67]

    Rigaud JL, Mosser G, Lacapere JJ, Olofsson A, Levy D, Ranck JL. Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J. Struct. Biol. 1997, 118, 226–235.Google Scholar

  • [68]

    Signorell GA, Kaufmann TC, Kukulski W, Engel A, Remigy HW. Controlled 2D crystallization of membrane proteins using methyl-beta-cyclodextrin. J. Struct. Biol. 2007, 157, 321–328.Google Scholar

  • [69]

    Abeyrathne PD, Arheit M, Kebbel F, Castano-Diez D, Goldie KN, Chami M, Stahlberg H, Renault L, Kühlbrandt W. 1.15 Analysis of 2-D crystals of membrane proteins by electron microscopy A2 – Egelman, Edward H. In Comprehensive Biophysics. Elsevier, 2012.Google Scholar

  • [70]

    Glaves JP, Fisher L, Ward A, Young HS. Helical crystallization of two example membrane proteins MsbA and the Ca(2+)-ATPase. Methods Enzymol. 2010, 483, 143–159.Google Scholar

  • [71]

    Korkhov VM, Sachse C, Short JM, Tate CG. Three-dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure (London, England: 1993) 2010, 18, 677–687.Google Scholar

  • [72]

    Kuang Q, Purhonen P, Hebert H. Two-dimensional crystallization procedure, from protein expression to sample preparation. BioMed Res. Int. 2015, 2015, 693869.Google Scholar

  • [73]

    Schenk AD, Castano-Diez D, Gipson B, Arheit M, Zeng X, Stahlberg H. 3D econstruction from 2D crystal image and diffraction data. Methods Enzymol. 2010, 482, 101–129.Google Scholar

  • [74]

    Scherer S, Arheit M, Kowal J, Zeng X, Stahlberg H. Single particle 3D reconstruction for 2D crystal images of membrane proteins. J. Struct. Biol. 2014, 185, 267–277.Google Scholar

  • [75]

    Sachse C, Chen JZ, Coureux PD, Stroupe ME, Fandrich M, Grigorieff N. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol. 2007, 371, 812–835.Google Scholar

  • [76]

    Whittaker JW. Cell-free protein synthesis: the state of the art. Biotechnol. Lett. 2013, 35, 143–152.Google Scholar

  • [77]

    Rosenblum G, Cooperman BS. Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett. 2014, 588, 261–268.Google Scholar

  • [78]

    Niwa T, Sasaki Y, Uemura E, Nakamura S, Akiyama M, Ando M, Sawada S, Mukai SA, Ueda T, Taguchi H, Akiyoshi K. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci. Rep. 2015, 5, 18025.Google Scholar

  • [79]

    Katzen F, Peterson TC, Kudlicki W. Membrane protein expression: no cells required. Trends Biotechnol. 2009, 27, 455–460.Google Scholar

  • [80]

    Yang Y, Wang J, Shigematsu H, Xu W, Shih WM, Rothman JE, Lin C. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 2016, 8, 476–483.Google Scholar

  • [81]

    Long AR, O’Brien CC, Alder NN. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner. PloS one 2012, 7, e46332.Google Scholar

  • [82]

    Mondal S, Johnston JM, Wang H, Khelashvili G, Filizola M, Weinstein H. Membrane driven spatial organization of GPCRs. Sci. Rep. 2013, 3, 2909.Google Scholar

  • [83]

    Hite RK, Gonen T, Harrison SC, Walz T. Interactions of lipids with aquaporin-0 and other membrane proteins. Pflugers Archiv. Eur. J. Physiol. 2008, 456, 651–661.Google Scholar

  • [84]

    Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta Biomembranes 2004, 1666, 105–117.Google Scholar

  • [85]

    Pantelic RS, Suk JW, Hao Y, Ruoff RS, Stahlberg H. Oxidative doping renders graphene hydrophilic, facilitating its use as a support in biological TEM. Nano Lett. 2011, 11, 4319–4323.Google Scholar

  • [86]

    Pantelic RS, Suk JW, Magnuson CW, Meyer JC, Wachsmuth P, Kaiser U, Ruoff RS, Stahlberg H. Graphene: substrate preparation and introduction. J. Struct. Biol. 2011, 174, 234–238.Google Scholar

  • [87]

    Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM. Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J. Struct. Biol. 2010, 170, 152–156.Google Scholar

  • [88]

    Razinkov I, Dandey VP, Wei H, Zhang Z, Melnekoff D, Rice WJ, Wigge C, Potter CS, Carragher B. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 2016, 195, 190–198.Google Scholar

  • [89]

    Arnold SA, Albiez S, Bieri A, Syntychaki A, Adaixo R, McLeod RA, Goldie KN, Stahlberg H, Braun T. Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples. J. Struct. Biol. 2017, in press.Google Scholar

  • [90]

    Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature methods 2013, 10, 584–590.Google Scholar

  • [91]

    Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N. Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 2012, 177, 630–637.Google Scholar

  • [92]

    McLeod R, Kowal J, Ringler P, Stahlberg H. Zorro: robust image alignment for cryogenic transmission electron microscopy. J. Struct. Biol. 2017, in press.Google Scholar

  • [93]

    Carazo JM, Sorzano COS, Otón J, Marabini R, Vargas J. Three-dimensional reconstruction methods in single particle analysis from transmission electron microscopy data. Arch. Biochem. Biophys. 2015, 581, 39–48.Google Scholar

  • [94]

    Al-Amoudi A, Chang JJ, Leforestier A, McDowall A, Salamin LM, Norlén LP, Richter K, Blanc NS, Studer D, Dubochet J. Cryo-electron microscopy of vitreous sections. EMBO J. 2004, 23, 3583–3588.Google Scholar

  • [95]

    Bharat TA, Russo CJ, Lowe J, Passmore LA, Scheres SH. Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure (London, England: 1993) 2015, 23, 1743–1753.Google Scholar

  • [96]

    Castano-Diez D, Kudryashev M, Arheit M, Stahlberg H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 2012, 178, 139–151.Google Scholar

  • [97]

    Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 2016, 100, 3–15.Google Scholar

  • [98]

    Chiu P-L, Pagel MD, Evans J, Chou HT, Zeng X, Gipson B, Stahlberg H, Nimigean CM. The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16 Å resolution. Structure (London, England: 1993) 2007, 15, 1053–1064.Google Scholar

  • [99]

    Kowal J, Chami M, Baumgartner P, Arheit M, Chiu PL, Rangl M, Scheuring S, Schröder GF, Nimigean CM, Stahlberg H. Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat. Commun. 2014, 5, 3106.Google Scholar

  • [100]

    Evjen TJ, Hupfeld S, Barnert S, Fossheim S, Schubert R, Brandl M. Physicochemical characterization of liposomes after ultrasound exposure – mechanisms of drug release. J. Pharm. Biomed. Anal. 2013, 78–79, 118–122.Google Scholar

  • [101]

    Kuntsche J, Horst JC, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 2011, 417, 120–137.Google Scholar

  • [102]

    Pereira de Souza T, Steiniger F, Stano P, Fahr A, Luisi PL. Spontaneous crowding of ribosomes and proteins inside vesicles: a possible mechanism for the origin of cell metabolism. Chembiochem Eur J. Chem. Biol. 2011, 12, 2325–2330.Google Scholar

  • [103]

    Jiko C, Davies KM, Shinzawa-Itoh K, Tani K, Maeda S, Mills DJ, Tsukihara T, Fujiyoshi Y, Kühlbrandt W, Gerle C. Bovine F(1)F(o) ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife 2015, 4, e06119.Google Scholar

  • [104]

    Helmprobst F, Frank M, Stigloher C. Presynaptic architecture of the larval zebrafish neuromuscular junction. J. Comp. Neurol. 2015, 523, 1984–1997.Google Scholar

  • [105]

    Irobalieva RN, Martins B, Medalia O. Cellular structural biology as revealed by cryo-electron tomography. J. Cell Sci. 2016, 129, 469.Google Scholar

  • [106]

    Jasnin M, Ecke M, Baumeister W, Gerisch G. Actin organization in cells responding to a perforated surface, revealed by live imaging and cryo-electron tomography. Structure (London, England: 1993) 2016, 24, 1031–1043.Google Scholar

  • [107]

    Bitto D, Halldorsson S, Caputo A, Huiskonen JT. Low pH and anionic lipid-dependent fusion of Uukuniemi phlebovirus to liposomes. J. Biol. Chem. 2016, 291, 6412–6422.Google Scholar

  • [108]

    Strauss JD, Hammonds JE, Yi H, Ding L, Spearman P, Wright ER. Three-dimensional structural characterization of HIV-1 tethered to human cells. J. Virol. 2016, 90, 1507–1521.Google Scholar

  • [109]

    Schur FK, Obr M, Hagen WJ, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich HG, Briggs JA. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science (New York, N.Y.) 2016, 353, 506–508.Google Scholar

  • [110]

    Kudryashev M, Diepold A, Amstutz M, Armitage JP, Stahlberg H, Cornelis GR. Yersinia enterocolitica type III secretion injectisomes form regularly spaced clusters, which incorporate new machines upon activation. Mol. Microbiol. 2015, 95, 875–884.Google Scholar

  • [111]

    Menzel K, Apfel UP, Wolter N, Rüger R, Alpermann T, Steiniger F, Gabel D, Förster S, Weigand W, Fahr A. [FeFe]-hydrogenase models assembled into vesicular structures. J. Liposome Res. 2014, 24, 59–68.Google Scholar

  • [112]

    Kim J, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM, Tampé R, Craik CS, Cheng Y. Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 2015, 517, 396–400.Google Scholar

  • [113]

    Popot JL. Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 2010, 79, 737–775.Google Scholar

  • [114]

    Gao Y, Cao E, Julius D, Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 2016, 534, 347–351.Google Scholar

  • [115]

    Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013, 504, 107–112.Google Scholar

  • [116]

    Vinothkumar KR. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr. Opin. Struct. Biol. 2015, 33, 103–114.Google Scholar

  • [117]

    Jiang QX, Chester DW, Sigworth FJ. Spherical reconstruction: a method for structure determination of membrane proteins from cryo-EM images. J. Struct. Biol. 2001, 133, 119–131.Google Scholar

  • [118]

    Wang L, Sigworth FJ. Liposomes on a streptavidin crystal: a system to study membrane proteins by cryo-EM. Methods Enzymol. 2010, 481, 147–164.Google Scholar

  • [119]

    Liu Y, Sigworth FJ. Automatic cryo-EM particle selection for membrane proteins in spherical liposomes. J. Struct. Biol. 2014, 185, 295–302.Google Scholar

  • [120]

    Basta T, Wu HJ, Morphew MK, Lee J, Ghosh N, Lai J, Heumann JM, Wang K, Lee YC, Rees DC, Stowell MH. Self-assembled lipid and membrane protein polyhedral nanoparticles. Proc. Natl Ac. Sci. USA 2014, 111, 670–674.Google Scholar

  • [121]

    Kudryashev M, Castaño-Díez D, Deluz C, Hassaine G, Grasso L, Graf-Meyer A, Vogel H, Stahlberg H. The structure of the mouse serotonin 5-HT3 receptor in lipid vesicles. Structure (London, England: 1993) 2016, 24, 165–170.Google Scholar

  • [122]

    Garcia-Manyes S, Oncins G, Sanz F. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys. J. 2005, 89(3), 1812–1826.Google Scholar

  • [123]

    Xia S, Xu S. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res. Int. 2005, 38, 289–296.Google Scholar

  • [124]

    Kim M, Rho Y, Jin KS, Ahn B, Jung S, Kim H, Ree M. pH-Dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 2011, 12, 1629–1640.Google Scholar

  • [125]

    Bhagat N, Virdi JS. Molecular and biochemical characterization of urease and survival of Yersinia enterocolitica biovar 1A in acidic pH in vitro. BMC Microbiol. 2009, 9, 1–14.Google Scholar

  • [126]

    Gipson B, Zeng X, Zhang ZY, Stahlberg H. 2dx--user-friendly image processing for 2D crystals. J. Struct. Biol. 2007, 157, 64–72.Google Scholar

  • [127]

    Arheit M, Castaño-Díez D, Thierry R, Gipson BR, Zeng X, Stahlberg H. Image processing of 2D crystal images. Methods Mol. Biol. 2013, 955, 171–194.Google Scholar

  • [128]

    Parton Daniel L, Klingelhoefer Jochen W, Sansom Mark SP. Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys. J. 2011, 101, 691–699.Google Scholar

  • [129]

    Hagen WJ, Wan W, Briggs JA. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 2016, in press.Google Scholar

  • [130]

    Faini M, Prinz S, Beck R, Schorb M, Riches JD, Bacia K, Brügger B, Wieland FT, Briggs JA. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science (New York, N.Y.) 2012, 336, 1451–1454.Google Scholar

  • [131]

    Castano-Diez D, Kudryashev M, Stahlberg H. Dynamo catalogue: geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. J. Struct. Biol. 2016, in press.Google Scholar

About the article

Kushal Sejwal

Kushal Sejwal received his BS in Life Sciences from the University of Delhi and MS in Bioinformatics from Jamia Millia Islamia, New Delhi, India. He worked as a research associate at the Rudolf Virchow Center, University of Würzburg, in Germany for 2 years, where he was first introduced to the field of cryo-electron microscopy. In October 2012, he moved to Basel, Switzerland, to pursue a PhD in the laboratory of Prof. Henning Stahlberg at the C-CINA, Biozentrum, University of Basel. He worked on structural elucidation of macromolecular complexes by cryo-EM and method development using proteoliposomes. In August 2016, he finished his PhD and started his postdoctoral training in the laboratory of Prof. Michel Steinmetz at the Paul Scherrer Institute in Switzerland.

Mohamed Chami

Mohamed Chami obtained his undergraduate degree in biology and geology at the University of Oujda in Morocco. After receiving a master’s degree in biochemistry in 1994 from the University of Paris, France, he pursued a PhD on the structure of the cell envelope of Corynebacterium glutamicum at the same University. From 1999 to 2003, he worked as a post-doc on reconstitution and 2D crystallization of membrane proteins in the group of Jean-Louis Rigaud at the Institut Curie in Paris. He moved to Basel, Switzerland, in 2003 and worked until 2008 in the laboratory of Andreas Engel and, since 2009, in the laboratory of Henning Stahlberg as a senior scientist, where he is involved in the structure elucidation of membrane proteins using cryo-electron microscopy. Since January 2016, Dr. Chami had been directing the BioEM laboratory, the service facility for electron microscopy in the life sciences at the Biozentrum of the University of Basel, Switzerland.

Julia Kowal

Julia Kowal from Poland got her master’s degree in biochemistry at the Jagiellonian University, Kraków, Poland, and then obtained her PhD in biophysics in the group of Prof. Andreas Engel at the University of Basel, Switzerland. She then studied potassium channel structures by cryo-electron microscopy in the group of Prof. Stahlberg at C-CINA from 2011 to 2016. Since 2016, she has been a post-doc in the group of Prof. Locher at the ETH Zurich, Switzerland, where she continues studying membrane proteins by cryo-electron microscopy.

Shirley A. Müller

Shirley A. Müller received a PhD in Chemistry from the University of Exeter, UK, in 1977. Since then, the main focus of her scientific career has been mass measurements by scanning transmission electron microscopy, in the group of Andreas Engel at the Maurice E. Müller Institute for High-Resolution Electron Microscopy and at C-CINA (both at the Biozentrum, University of Basel, Switzerland). Her present tasks at C-CINA in the group of Henning Stahlberg are concerned with project management and scientific editing.

Henning Stahlberg

Henning Stahlberg studied physics at the Technical University of Berlin, Germany, from 1989 to 1992, and obtained his PhD from 1992 to 1997 in structural biology of membrane proteins at the EPFL in Lausanne, Switzerland, in the groups of Prof. Dubochet and Vogel. From 1998 to 2003, he studied membrane proteins by cryo-electron microscopy as a post-doc in the group of Prof. Engel at the Biozentrum, University of Basel, Switzerland. In 2003, he joined the University of California in Davis, CA, USA, as Assistant Professor, where he became tenured Associate Professor in 2007. Since 2009, he has been directing the Center for Cellular Imaging and NanoAnalytics (C-CINA) as Professor of the Biozentrum at the University of Basel, Switzerland.

Received: 2016-09-12

Accepted: 2016-12-01

Published Online: 2017-01-20

Published in Print: 2017-02-01

Citation Information: Nanotechnology Reviews, Volume 6, Issue 1, Pages 57–74, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2016-0081.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in