Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanotechnology Reviews

Editor-in-Chief: Kumar, Challa

Ed. by Hamblin, Michael R. / Bianco, Alberto / Jin, Rongchao / Köhler, J. Michael / Hudait, Mantu K. / Dai, Ning / Lytton-Jean, Abigail / Xie, Jianping / Bryan, Lynn A. / Thiessen, Rose / Alexiou, Christoph / Lee, Jae-Seung / Delville, Marie-Helene / Yan, Ning / Baretzky, Brigitte / Burg, Thomas P. / Fenniri, Hicham / Yang, Jun / Hosmane, Narayan S. / Dufrene, Yves / Podila, Ramakrishna / Eswaramoorthy, Muthusamy

6 Issues per year


IMPACT FACTOR 2016: 1.438
5-year IMPACT FACTOR: 1.892

CiteScore 2016: 1.64

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.514

Online
ISSN
2191-9097
See all formats and pricing
More options …
Volume 6, Issue 5 (Oct 2017)

Issues

The role of defects and dimensionality in influencing the charge, capacitance, and energy storage of graphene and 2D materials

Prabhakar R. Bandaru
  • Corresponding author
  • Room 258, Engineering 2, Department of Mechanical Engineering, 9500 Gilman Drive, MC 0411, UC, San Diego, La Jolla, CA 92093-0411, USA, Phone: +(858) 534-5325
  • Program in Materials Science, Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hidenori Yamada
  • Department of Electrical Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rajaram Narayanan
  • Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093-0411, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark Hoefer
  • Program in Materials Science, Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-16 | DOI: https://doi.org/10.1515/ntrev-2016-0099

Abstract

The inevitable presence of defects in graphene and other two-dimensional (2D) materials influences the charge density and distribution along with the concomitant measured capacitance and the related energy density. We review, in this paper, the various manifestations of the capacitance including both the classical electrostatic (e.g. associated with double layer, space charge, chemical capacitances) and the quantum forms, as well as a few methodologies to tune the respective capacitances. The role of a proper determination of the surface area of 2D materials, considering the presence of defects, in determining the capacitance and the magnitude of the energy storage is also considered.

Keywords: 2D materials; capacitance; defects; energy storage; graphene

References

  • [1]

    Nelson DJ, Strano M. Richard Smalley: saving the world with nanotechnology. Nat. Nanotechnol. 2006, 1, 96–97.CrossrefGoogle Scholar

  • [2]

    ISO/TS 27687:2008 – Nanotechnologies – terminology and definitions for nano-objects – nanoparticle, nanofibre and nanoplate. Available at: http://www.iso.org/iso/catalogue_detail?csnumber=44278. Accessed 16 August, 2014.

  • [3]

    Kastnelson MI. Graphene: Carbon in Two Dimensions. Cambridge University Press: Cambridge, UK, 2012.Google Scholar

  • [4]

    Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK. Room temperature quantum hall effect in graphene. Science. 2007, 315, 1379.PubMedCrossrefGoogle Scholar

  • [5]

    Bandaru PR. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 2007, 7, 1239–1267.CrossrefPubMedGoogle Scholar

  • [6]

    De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science 2013, 339, 535–539.PubMedCrossrefGoogle Scholar

  • [7]

    Jacak L, Hawrylak P, Wojs A. Quantum Dots. Springer: New York, 1998.Google Scholar

  • [8]

    Linden D, Reddy TB. Linden’s handbook of batteries. McGraw Hill: New York, NY, 2010.Google Scholar

  • [9]

    Burke AF. Electrochemical capacitors. In Linden’s Handbook of Batteries. Reddy TB, Linden D, Eds. McGraw Hill: New York, NY, 2011.Google Scholar

  • [10]

    Meller M, Menzel J, Fic K, Gastol D, Frackowiak E. Electrochemical capacitors as attractive power sources. Solid State Ionics 2014, 265, 61–67.CrossrefGoogle Scholar

  • [11]

    Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501.CrossrefPubMedGoogle Scholar

  • [12]

    Delahay P. Double Layer and Electrode Kinetics. Interscience: New York, NY, 1965.Google Scholar

  • [13]

    Shi H. Activated carbons and double layer capacitance. Electrochim. Acta 1996, 41, 1633.CrossrefGoogle Scholar

  • [14]

    Barbieri O, Kötz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43, 1303–1310.CrossrefGoogle Scholar

  • [15]

    Lewerenz HJ. On the structure of the Helmholtz layer and its implications on electrode kinetics. ECS Trans 2013, 50, 3–20.CrossrefGoogle Scholar

  • [16]

    Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. John Wiley: New York, 2001.Google Scholar

  • [17]

    Rieger PH. Electrochemistry. 2nd ed. Chapman and Hall: New York, 1994.Google Scholar

  • [18]

    Conway BE, Bockris JO, Ammar IA. The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution. Trans. Faraday Soc. 1951, 47, 756.CrossrefGoogle Scholar

  • [19]

    Webb TJ. The free energy of hydration of ions and the electrostriction of the solvent. J. Am. Chem. Soc. 1926, 48, 2589–2603.CrossrefGoogle Scholar

  • [20]

    Li Q, Song J, Besenbacher F, Dong M. Two-dimensional material confined water. Acc. Chem. Res. 2015, 48, 119–127.CrossrefPubMedGoogle Scholar

  • [21]

    Bandaru PR, Pichanusakorn P. An outline of the synthesis and properties of silicon nanowires. Semicond. Sci. Tech. 2010, 25, 024003.CrossrefGoogle Scholar

  • [22]

    Datta S. Quantum Transport: Atom to Transistor. Cambridge University Press: New York, 2005.Google Scholar

  • [23]

    Sze SM. Semiconductor Devices: Physics and Technology. 2nd ed. John Wiley & Sons, Inc.: Singapore, 2003.Google Scholar

  • [24]

    Muller RS, Kamins TI. Device Electronics for Integrated Circuits. 2nd ed. John Wiley: New York, 1986.Google Scholar

  • [25]

    Gerischer H. Principles of electrochemistry. In The CRC Handbook of Solid State Electrochemistry. Gellings PJ, Bouwmeester HJM, Eds. CRC Press: Boca Raton, FL, 1997.Google Scholar

  • [26]

    Ashcroft NW, Mermin ND. Solid State Physics. Saunders College: Orlando, FL, 1976.Google Scholar

  • [27]

    Narayanan R, Yamada H, Karakaya M, Podila R, Rao AM, Bandaru PR. Modulation of the electrostatic and quantum capacitances of few layered graphenes through plasma processing. Nano Lett. 2015, 15, 3067–3072.PubMedCrossrefGoogle Scholar

  • [28]

    Kuroda MA, Tersoff J, Martyna GJ. Nonlinear screening in multilayer graphene systems. Phys. Rev. Lett. 2011, 106, 116804.CrossrefPubMedGoogle Scholar

  • [29]

    Sze SM, Ng KK. Physics of Semiconductor Devices. Wiley-Interscience: Hoboken, NJ, 2006.Google Scholar

  • [30]

    Grätzel M. Photoelectrochemical cells. Nature 2001, 414, 338–344.PubMedCrossrefGoogle Scholar

  • [31]

    Döscher H, Geisz JF, Deutsch TG, Turner JA. Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 2014, 7, 2951.CrossrefGoogle Scholar

  • [32]

    Peter L, Ponomarev E, Franco G, Shaw N. Aspects of the photoelectrochemistry of nanocrystalline systems. Electrochim. Acta 1999, 45, 549–560.CrossrefGoogle Scholar

  • [33]

    O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.CrossrefGoogle Scholar

  • [34]

    Bisquert J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 2003, 5, 5360.CrossrefGoogle Scholar

  • [35]

    Ibach H, Luth H. Solid-State Physics: An Introduction to Theory and Experiment. Springer-Verlag: Berlin, 1991.Google Scholar

  • [36]

    Xia J, Chen F, Li J, Tao N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509.CrossrefPubMedGoogle Scholar

  • [37]

    Cline KK, McDermott MT, McCreery RL. Anomalously slow electron transfer at ordered graphite electrodes: influence of electronic factors and reactive sites. J. Phys. Chem. 1994, 98, 5314–5319.CrossrefGoogle Scholar

  • [38]

    Chen P, Fryling MA, Mccreery RL. Electron transfer kinetics at modified carbon electrode surfaces: the role of specific surface sites. Anal. Chem. 1995, 67, 3115–3122.CrossrefGoogle Scholar

  • [39]

    Rice RJ, McCreery RL. Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes. Anal. Chem. 1989, 61, 1637–1641.CrossrefGoogle Scholar

  • [40]

    Hoefer M, Bandaru PR. Electrochemical characteristics of closely spaced defect tuned carbon nanotube arrays. J. Electrochem. Soc. 2013, 160, H360–H367.Google Scholar

  • [41]

    Peigney A, Laurent C, Flahaut E, Basca RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507–514.CrossrefGoogle Scholar

  • [42]

    Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossrefPubMedGoogle Scholar

  • [43]

    Huggins R. Supercapacitors and electrochemical pulse sources. Solid State Ionics 2000, 134, 179–195.CrossrefGoogle Scholar

  • [44]

    Miller JR, Burke AF. Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 2008, 17, 53–57.Google Scholar

  • [45]

    Burke A. Ultracapacitors: why, how, and where is the technology. J. Power Sources. 2000, 91, 37–50.CrossrefGoogle Scholar

  • [46]

    Miller JM. Ultracapacitor applications. The Institution of Engineering and Technology: Herts, UK, 2011.Google Scholar

  • [47]

    Miller JR. Valuing reversible energy storage. Science. 2012, 335, 1312–1313.CrossrefPubMedGoogle Scholar

  • [48]

    Radovic LR, Gogotsi Y. Surface chemical and electrochemical properties of carbons. In Carbons for Electrochemical Energy Storage and Conversion Systems. Beguin F, Frackowiak E, Eds, CRC Press: New York, 2010.Google Scholar

  • [49]

    Ji X, Banks C, Crossley A, Compton R. Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. J. Phys. Chem. 2006, 7, 1337–1344.Google Scholar

  • [50]

    Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 7, 829–841.Google Scholar

  • [51]

    Neumann CCM, Batchelor-McAuley C, Downing C, Compton RG. Anthraquinone monosulfonate adsorbed on graphite shows two very different rates of electron transfer: surface heterogeneity due to basal and edge plane sites. Chem. A Eur. J. 2011, 17, 7320–7326.CrossrefGoogle Scholar

  • [52]

    Wiggins-Camacho JD, Stevenson KJ. Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J. Phys. Chem. C2009, 113, 19082–19090.CrossrefGoogle Scholar

  • [53]

    Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossrefPubMedGoogle Scholar

  • [54]

    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science. 2011, 332, 1537–1541.PubMedCrossrefGoogle Scholar

  • [55]

    Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang LL, MacDonald AH, Ruoff RS. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.PubMedGoogle Scholar

  • [56]

    Kinoshita K. Carbon: Electrochemical and Physicochemical Properties. John Wiley & Sons, Inc.: New York, NY, 1988.Google Scholar

  • [57]

    Pisana S, Lazzeri M, Casiraghi C, Novoselov KS, Geim AK, Ferrari AC, Mauri F. Breakdown of the adiabatic born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.CrossrefPubMedGoogle Scholar

  • [58]

    Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido DA, Mingo N, Ruoff RS, Shi L. Two-dimensional phonon transport in supported graphene. Science. 2010, 328, 213–216.PubMedCrossrefGoogle Scholar

  • [59]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 2010, 466, 470–473.CrossrefPubMedGoogle Scholar

  • [60]

    Uesugi E, Goto H, Eguchi R, Fujiwara A, Kubozono Y. Electric double-layer capacitance between an ionic liquid and few-layer graphene. Sci. Rep. 2013, 3, 1595.PubMedCrossrefGoogle Scholar

  • [61]

    Wood BC, Ogitsu T, Otani M, Biener J. First-principles-inspired design strategies for graphene-based supercapacitor electrodes. J. Phys. Chem. C2014, 118, 4–15.CrossrefGoogle Scholar

  • [62]

    Israelachvili JN. Intermolecular and Surface Forces, 3rd ed, Academic Press: San Diego, 2011.Google Scholar

  • [63]

    Randin J-P, Yeager E. Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes. J. Electroanal. Chem. 1975, 58, 313–321.CrossrefGoogle Scholar

  • [64]

    Li Q, Batchelor-McAuley C, Compton RG. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. J. Phys. Chem. B2010, 114, 7423–7428.PubMedCrossrefGoogle Scholar

  • [65]

    Kobayashi K. Electronic structure of a stepped graphite surface. Phys. Rev. B1993, 48, 1757–1760.CrossrefGoogle Scholar

  • [66]

    Lewis NS. An analysis of charge transfer rate constants for semiconductor/liquid interfaces. Annu. Rev. Phys. Chem. 1991, 42, 543–580.CrossrefGoogle Scholar

  • [67]

    McDermott MT, McCreery RL. Scanning tunneling microscopy of ordered graphite and glassy carbon surfaces: electronic control of quinone adsorption. Langmuir. 1994, 10, 4307–4314.CrossrefGoogle Scholar

  • [68]

    Kwon S, Vidic R, Borguet E. The effect of surface chemical functional groups on the adsorption and desorption of a polar molecule, acetone, from a model carbonaceous surface, graphite. Surf. Sci. 2003, 522, 17–26.CrossrefGoogle Scholar

  • [69]

    Porter DA, Easterling KE. Phase Transformations in Metals and Alloys. Nelson Thornes: Cheltenham, UK, 1992.Google Scholar

  • [70]

    Kelly A, Groves GW. Crystallography and Crystal Defects. TechBooks: Herndon, VA, 1970.Google Scholar

  • [71]

    Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano. 2011, 5, 26–41.CrossrefPubMedGoogle Scholar

  • [72]

    Li L, Reich S, Robertson J. Defect energies of graphite: density-functional calculations. Phys. Rev. B2005, 72, 184109.CrossrefGoogle Scholar

  • [73]

    Hoffmann R. Solids and Surfaces, A Chemist’s View of Bonding in Extended Structures. VCH Publishers: New York, 1988.Google Scholar

  • [74]

    Krasheninnikov AV, Lehtinen PO, Foster AS, Nieminen RM. Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 2006, 418, 132–136.CrossrefGoogle Scholar

  • [75]

    Krasheninnikov AV, Nordlund K, Sirvio M, Salonen E, Keinonen J. Formation of ion-irradiation induced atomic scale defects on walls of carbon nanotubes. Phys. Rev. B Condens. Matter. 2001, 63, 245405.CrossrefGoogle Scholar

  • [76]

    Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 2002, 89, 75501–75505.Google Scholar

  • [77]

    Nichols J, Deck CP, Saito H, Bandaru PR. Artificial introduction of defects into vertically aligned multiwalled carbon nanotube ensembles: application to electrochemical sensors. J. Appl. Phys. 2007, 102, 64306.CrossrefGoogle Scholar

  • [78]

    Hoefer MA. Electrochemical Implications of Defects in Carbon Nanotubes. University of California: San Diego, 2012.Google Scholar

  • [79]

    Kiang C-H, Endo M, Ajayan PM, Dresselhaus G, Dresselhaus MS. Size effects in carbon nanotubes. Phys. Rev. Lett. 1998, 81, 1869–1872.CrossrefGoogle Scholar

  • [80]

    Lehtinen P, Foster A, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen R. Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 2003, 91, 017202.CrossrefPubMedGoogle Scholar

  • [81]

    Yazyev OV, Pasquarello A. Metal adatoms on graphene and hexagonal boron nitride: towards rational design of self-assembly templates. Phys. Rev. B2010, 82, 045407.CrossrefGoogle Scholar

  • [82]

    Krasheninnikov A, Lehtinen P, Foster A, Pyykkö P, Nieminen R. Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102, 126807.PubMedCrossrefGoogle Scholar

  • [83]

    de Gennes P-G, Brochard-Wyart F, Quere D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer: New York, NY, 2002.Google Scholar

  • [84]

    Dzubiella J, Hansen J-P. Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J. Chem. Phys. 2005, 122, 234706.PubMedCrossrefGoogle Scholar

  • [85]

    Conway BE, Gileadi E, Dzieciuch M. Calculation and analysis of adsorption pseudo-capacitance and surface coverage from E.m.f. decay and polarization curves: applications to a decarboxylation reaction. Electrochim. Acta. 1963, 8, 143–161.CrossrefGoogle Scholar

  • [86]

    Schlichthörl G, Huang SY, Sprague J, Frank AJ. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells:a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B. 1997, 101, 8141–8155.CrossrefGoogle Scholar

  • [87]

    Fernandez-Serra M-V, Adessi C, Blasé X. Conductance, surface traps, and passivation in doped silicon nanowires. Nanoletters 2006, 6, 2674–2678.CrossrefGoogle Scholar

  • [88]

    Dong W, Sakamoto JS, Dunn B. Electrochemical properties of vanadium oxide aerogels. Sci. Technol. Adv. Mater. 2003, 4, 3–11.CrossrefGoogle Scholar

  • [89]

    Nichols JA, Saito H, Deck C, Bandaru PR. Artificial introduction of defects into vertically aligned multiwall carbon nanotube ensembles: application to electrochemical sensors. J. Appl. Phys. 2007, 102, 64306.CrossrefGoogle Scholar

  • [90]

    Hoefer MA, Bandaru PR. Defect engineering of the electrochemical characteristics of carbon nanotube varieties. J. Appl. Phys. 2010, 108, 034308.CrossrefGoogle Scholar

  • [91]

    Bandaru PR, Yamada H, Narayanan R, Hoefer M. Charge transfer and storage in nanostructures. Mater. Sci. Eng. R Reports. 2015, 96, 1–69.CrossrefGoogle Scholar

  • [92]

    Geim AK, Grigorieva IV. Van Der Waals heterostructures. Nature 2013, 499, 419–425.PubMedCrossrefGoogle Scholar

About the article

Prabhakar R. Bandaru

Prabhakar R. Bandaru is a Professor of Materials Science in the Mechanical Engineering Department at the University of California San Diego (UCSD). He has worked extensively in energy storage systems, including electrochemical capacitors (ECs) in terms of the fundamental materials physics and chemistry. He also pioneered the use of novel one-dimensional (e.g. nanotube and nanowire) and two-dimensional (e.g. graphene) nanostructures for new modalities in electrochemical storage and electronics.

Hidenori Yamada

Hidenori Yamada is a graduate student in the Electrical Engineering Department at UCSD. He considered the limitations imposed by the electronic density of states in limiting the maximum current that could be obtained in electrochemical devices and contributed extensively on relevant quantum mechanical interpretations.

Rajaram Narayanan

Rajaram Narayanan is a graduate student in the Nanoengineering department at UCSD and avidly pursues electrochemical analysis of low-dimensional carbon nanostructures. He pioneered the use of thin layer electrochemistry for reducing diffusional limitations in ECs and multi-scale hierarchical charge storage.

Mark Hoefer

Mark Hoefer is presently a Research Engineer at Bosch, Germany. Mark graduated with a PhD from the University of California, San Diego, in 2012 with a thesis on the Electrochemical implications of defects in carbon nanostructures. He pioneered the harness of charged defects for controlled capacitive storage.


Received: 2016-11-18

Accepted: 2017-02-09

Published Online: 2017-03-16

Published in Print: 2017-10-26


Citation Information: Nanotechnology Reviews, ISSN (Online) 2191-9097, ISSN (Print) 2191-9089, DOI: https://doi.org/10.1515/ntrev-2016-0099.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in