Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Instytut Chemii i Techniki Jadrowej

4 Issues per year

IMPACT FACTOR 2016: 0.760

CiteScore 2016: 0.55

SCImago Journal Rank (SJR) 2015: 0.205
Source Normalized Impact per Paper (SNIP) 2015: 0.461

Open Access
See all formats and pricing
More options …

Preparation and anatomical distribution study of 67Ga-alginic acid nanoparticles for SPECT purposes in rainbow trout (Oncorhynchus mykiss)

Marzieh Heidarieh / Fatemeh Daryalal
  • Department of Fisheries and Environment Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alireza Mirvaghefi
  • Department of Fisheries and Environment Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saeid Rajabifar / Adama Diallo
  • Animal Production and Health Laboratory, International Atomic Energy Agency (IAEA), Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahdi Sadeghi / Farhood Zeiai / Saeed Moodi / Ehsan Maadi / Najmeh Sheikhzadeh
  • Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hassan Heidarieh / Maryam Hedyati
  • Department of Fisheries and Environment Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-30 | DOI: https://doi.org/10.2478/nuka-2014-0019


Ergosan contains 1% alginic acid extracted from two brown sea weeds. Little is known about the target organs and anatomical distribution of Ergosan (alginic acid) in fish. Therefore, feasibility of developing alginic acid nanoparticles to detect target organ in rainbow trout is interesting. To make nanoparticles, Ergosan extract (alginic acid) was irradiated at 30 kGy in a cobalt-60 irradiator and characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Results from TEM images showed that particle sizes of irradiated alginic acid ranged from 30 to 70 nm. The FTIR results indicated that gamma irradiation had no significant influence on the basic structure of alginic acid. Later, alginic acid nanoparticles were successively labelled with 67Ga-gallium chloride. The biodistribution of irradiated Ergosan in normal rainbow trout showed highest uptake in intestine and kidney and then in liver and kidney at 4- and 24-h post injection, respectively. Single-photon emission computed tomography (SPECT) images also demonstrated target specific binding of the tracer at 4- and 24-h post injection. In conclusion, the feed supplemented with alginic acid nanoparticles enhanced SPECT images of gastrointestinal morphology and immunity system in normal rainbow trout.

Keywords : rainbow trout; 67Ga; intestine; SPECT; alginic acid nanoparticles; gamma irradiation


  • 1. Krefting, A. (1986). An improved method of treating seaweed to obtain valuable products the form. British Patent No. 11538.Google Scholar

  • 2. Mahmoudi, M., Milani, A. S., Simchi, A., & Stroeve, P. (2009). Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci., 336, 510-518.Web of ScienceGoogle Scholar

  • 3. Goycoolea, F. M., Lollo, G., Remunñá-Lòpez, C., Quaglia, F., & Alonso, M. J. (2009). Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules, 10, 1736-1743.Web of ScienceCrossrefGoogle Scholar

  • 4. Chen, V. J., & Ma, P. X. (2004). Nano-fi brous poly (L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials, 25(11), 2065-2073.CrossrefGoogle Scholar

  • 5. Haji-Saeid, M., Safrany, A., Sampa, M. H., & Ramamoorthy, N. (2010) Radiation processing of natural polymers: The IAEA contribution. Radiat. Phys. Chem., 79, 255-260.Google Scholar

  • 6. Duy, N. N., Phu, D. V., Anh, N. T., & Hien, N. Q. (2011). Synergistic degradation to prepare oligochitosan by gamma-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat. Phys. Chem., 80, 848-853.Google Scholar

  • 7. Naeem, M., Idrees, M., Aftab, T., Khan, M. M. A., & Varshney, L. (2012). Depolymerised carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydr. Polym., 87, 1211-1218.Web of ScienceGoogle Scholar

  • 8. Jalali, M. A., Ahmadifar, E., Sudagar, M., & Azari Takami, G. (2009). Growth effi ciency, body composition, survival and haematological changes in great sturgeon (Huso huso Linnaeus, 1758) juveniles fed diets supplemented with different levels of Ergosan. Aquac. Res., 40(7), 804-809.Web of ScienceGoogle Scholar

  • 9. Heidarieh, M., Mirvaghefi , A. R., Akbari, M., Farahmand, H., Sheikhzadeh, N., Shahbazfar, A. A., & Behgar, M. (2012). Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 38, 1169-1174.Web of ScienceGoogle Scholar

  • 10. Barrefelt, Å. A., Brismar, T. B., Egri, G., Aspelin, P., Olsson, A., Oddo, L., Margheritelli, S., Caidahl, K., Paradossi, G., Dähne, L., Axelsson, R., & Hassan, M. (2013). Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles. EJNMMI Res., 3, 12.Google Scholar

  • 11. Jalilian, A. R., Yousefnia, H., Shafaii, K., Novinrouz, A., & Rajamand, A. A. (2012). Preparation and biodistribution studies of a radiogallium-acetylacetonate bis (thiosemicarbazone) complex in tumor-bearing rodents. Iran. J. Pharm. Res., 11(2), 523-531.Google Scholar

  • 12. Peddie, S., Zou, J., & Secombes, C. J. (2002). Immunostimulation in the rainbow trout (Oncorhynchus mykiss) following intraperitoneal administration of Ergosan. Vet. Immunol. Immunop., 86, 101-113.Google Scholar

  • 13. Heidarieh, M., Borzouei, A., Rajabifar, S., Ziaie, F., & Shafi ei, Sh. (2012). Effects of gamma irradiation on antioxidant activity of Ergosan. Iran. J. Radiat. Res., 9, 245-249.Google Scholar

  • 14. Heidarieh, M., Daryalal, F., Mirvaghefi, A. R., Shahbazfar, A. A., Moodi, S., & Heidarieh, H. (2014). Histopathological alterations in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), induced by irradiated alginic acid. J. Appl. Ichthyol., 30, 543-545.Web of ScienceGoogle Scholar

  • 15. Orlando, P., Binaglia, L., De Feo, A., Trevisi, R., Melodia, C., & Trenta, R. (1994). Preparation of high molecular weight radioiodmated alginic acid. J. Label. Compd. Radiopharm., 34(7), 653-657.Google Scholar

  • 16. Sanchez, A., Toby´o, M., Gonza´lez, L., Fabra, A., & Alonso, M. J. (2003). Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur. J. Pharm. Sci., 18, 221-229.CrossrefGoogle Scholar

  • 17. Karim, M. R., Lim, K. T., Lee, C. J., Islam Bhuiyan, M. T., Kim, H. J., Park, L. S., & Lee, M. S. (2007). Synthesis of core-shell silver-polyaniline nanocomposites by gamma radiolysis method. J. Colloid Interface Sci., 45, 5741-5747.Google Scholar

  • 18. Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Transactions F: Nanotechnology, 19(6), 2023-2028.Google Scholar

  • 19. Grabowska, B., & Holtzer, M. (2009). Structural examination of the cross-linking reaction mechanism of polyarylate binding agents. Arch. Metall. Mater., 54, 427-437.Google Scholar

  • 20. Moosavi-Nasab, M., Taherian, A. R., Bakhtiyari, M., Farahnaky, A., & Askari, H. (2012). Structural and rheological properties of succinoglycan biogums made from low-quality date syrup or sucrose using agrobacterium radiobacter inoculation. Food Bioprocess Technol., 5, 638-647.Web of ScienceGoogle Scholar

  • 21. Heidarieh, M., Soltani, M., Tamimi, A. H., & Toluei, M. H. (2011). Comparative effect of raw fiber (Vitacel) and alginic acid (Ergosan) on growth performance, immunocompetent cell population and plasma lysozyme content of giant sturgeon (Huso huso). Turk. J. Fish. Aquat. Sci., 11, 445-450.Web of ScienceGoogle Scholar

  • 22. Merrifield, D. L., Harper, G. M., Mustafa, S., Carnevali, O., Picchietti, S., & Davies, S. J. (2011). Effect of dietary alginic acid on juvenile tilapia (Oreochromis niloticus) intestinal microbial balance, intestinal histology and growth performance. Cell Tissue Res., 344, 135-146.Web of ScienceGoogle Scholar

  • 23. Press, C. Mc. L., Evensen, Ø., Reitan, L. J., & Landsverk, T. (1996). Retention of furunculosis vaccine components in Atlantic salmon (Salmon solar L.), following different routes of vaccine administration. J. Fish Dis., 19(3), 215-224.CrossrefGoogle Scholar

  • 24. Joosten, P. H. M., Kruijer, W. J., & Rombout, J. H. W. M. (1996). Anal immunisation of carp and rainbow trout with different fractions of a Vibrio anguillarum bacterin. Fish Shellfi sh Immunol., 6, 541-551.Google Scholar

  • 25. Faghani, T., Kousha, A., Azari Takami, Gh., & Faghani, S. (2008). Study on growth performance, survival rate, hematological parameters in rainbow trout (Oncorhynchus mykiss) in Mazandaran Province of Iran. J. Fish. Aquat. Sci., 3, 398-403.Google Scholar

  • 26. Montero-Rocha, A., McIntosh, D., Sanchez-Merino, R., & Flores, I. (2006). Immunostimulation of white shrimp (Litopenaeus vannamei) following dietary administration of Ergosan. J. Invertebr. Pathol., 91, 188-194.Google Scholar

  • 27. Gioacchini, G., Smith, P., & Carnevali, O. (2008). Effects of Ergosan on the expression of cytokine genes in the liver of juvenile rainbow trout (Oncorhynchus mykiss) exposed to enteric red mouth vaccine. Vet. Immunol. Immunopathol., 123, 215-222.Google Scholar

  • 28. Caipang, C. M., Lazado, C. C., Berg, I., Brinchmann, M. F., & Kiron, V. (2011). Infl uence of alginic acid and fucoidan on the immune responses of head kidney leukocytes in cod. Fish Physiol. Biochem., 37(3), 603-612. Web of ScienceGoogle Scholar

About the article

Received: 2014-01-08

Accepted: 2014-09-08

Published Online: 2014-12-30

Published in Print: 2014-12-01

Citation Information: Nukleonika, Volume 59, Issue 4, Pages 153–159, ISSN (Online) 0029-5922, DOI: https://doi.org/10.2478/nuka-2014-0019.

Export Citation

© by Marzieh Heidarieh. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Najmeh Sheikhzadeh, Fatemeh Chehrara, Marzieh Heidarieh, Katayoon Nofouzi, and Behzad Baradaran
Chinese Journal of Oceanology and Limnology, 2016, Volume 34, Number 1, Page 13

Comments (0)

Please log in or register to comment.
Log in