Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

4 Issues per year


IMPACT FACTOR 2016: 0.760

CiteScore 2016: 0.55

SCImago Journal Rank (SJR) 2015: 0.205
Source Normalized Impact per Paper (SNIP) 2015: 0.461

Open Access
Online
ISSN
0029-5922
See all formats and pricing
More options …

Silver nanoparticle accumulation by aquatic organisms – neutron activation as a tool for the environmental fate of nanoparticles tracing

Monika Asztemborska
  • Corresponding author
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Jakubiak
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Książyk
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Romuald Stęborowski
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Halina Polkowska-Motrenko
  • Department of Analytical Chemistry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grażyna Bystrzejewska-Piotrowska
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-30 | DOI: https://doi.org/10.2478/nuka-2014-0023

Abstract

Water environments are noted as being some of the most exposed to the influence of toxic nanoparticles (NPs). Therefore, there is a growing need for the investigation of the accumulation and toxicity of NPs to aquatic organisms. In our studies neutron activation followed by gamma spectrometry and liquid scintillation counting were used for studying the accumulation of silver nanoparticles (AgNPs) by freshwater larvae of Chironomus and fish Danio rerio. The influence of exposition time, concentration and the source of nanoparticles on the efficiency of AgNP accumulation were studied. It was found that AgNPs are efficiently accumulated by Chironomid larvae for the first 30 hours of exposition; then, the amount of silver nanoparticles decreases. The silver content in larvae increases together with the NP concentration in water. Larvae which have accumulated AgNPs can be a source of nanoparticles for fish and certainly higher levels of Ag in the trophic chain. In comparison with water contamination, silver nanoparticles are more efficiently accumulated if fish are fed with AgNP-contaminated food. Finally, it was concluded that the applied study strategy, including neutron activation of nanoparticles, is very useful technique for tracing the uptake and accumulation of NPs in organisms

Keywords : silver; nanoparticles; neutron activation; Chironomid larvae; Danio rerio

References

  • 1. Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clin. Chim. Acta, 411, 1841-1848. DOI: 10.1016/j.cca.2010.08.016.CrossrefWeb of ScienceGoogle Scholar

  • 2. Capek, I. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci., 110, 49-74. DOI: 10.1016/j. cis.2004.02.003.CrossrefGoogle Scholar

  • 3. Mahendra, R., Alka, Y., & Aniket, G. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27(1), 76-83. DOI: 10.1016/j. biotechadv.2008.09.002.Web of ScienceCrossrefGoogle Scholar

  • 4. Frattini, A., Pellegri, N., Nicastro, D., & Sanctis, O. D. (2005). Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys., 94, 148-152. DOI:10.1016/j.matchemphys. 2005.04.023CrossrefGoogle Scholar

  • 5. Rand, B. P., Peumans, P., & Forrest, S. R. (2004). Long- -range absorption enhancement in organic tandem thin-fi lm solar cells containing silver nanoclusters. J. Appl. Phys., 96, 7519-7526. DOI:10.1063/1.1812589.CrossrefGoogle Scholar

  • 6. Zhai, H. J., Sun, D. W., & Wang, H. S. (2006). Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol., 6, 1968-1972. DOI:10.1166/ jnn.2006.320.CrossrefGoogle Scholar

  • 7. Yamamoto, S., & Watarai, H. (2006). Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir, 22, 6562-6569. DOI: 10.1021/la0603119.PubMedCrossrefGoogle Scholar

  • 8. Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage., 29(9), 2587-2595. DOI: 10.1016/j. wasman.2009.04.001.CrossrefGoogle Scholar

  • 9. Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., & Lead, J. R. (2011). Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int., 37, 517-531. DOI: 10.1016/j.envint.2010.10.012.Web of ScienceCrossrefGoogle Scholar

  • 10. Blinova, I., Niskanen, J., Kajankari, P., Kanarbik, L., Käkinen, A., Tenhu, H., Penttinen, O. P., & Kahru, A. (2013). Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res., 20, 3456-3463. DOI: 10.1007/s11356-012-1290-5.Web of ScienceCrossrefGoogle Scholar

  • 11. Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., & Xi, T. (2009). Distribution, translocation and accumulation of silver nanoparticles in rats. J. Nanosci. Nanotechnol., 9(8), 4924-4932. DOI:10.1166/ jnn.2009.1269.CrossrefWeb of ScienceGoogle Scholar

  • 12. Pinder, L. C. V. (1986). Biology of freshwater chironomidae. Annu. Rev. Entomol., 31, 1-23. DOI: 10.1146/annurev.en.31.010186.000245.CrossrefGoogle Scholar

  • 13. OECD. (2004). Test guideline 218 sediment-water chironomid toxicity test using spiked sediment.Google Scholar

  • 14. Krantzberg, G. (1989). Metal accumulation by chironomid larvae: the effects of age and body weight on metal body burdens. Hydrobiologia, 188/189, 497-506. DOI: 10.1007/BF00027817.CrossrefGoogle Scholar

  • 15. Goodyear, K. L., & McNeill, S. (1999). Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci. Total Environ., 229, 1-19. DOI: 10.1016/S0048-9697(99)00051-0.CrossrefGoogle Scholar

  • 16. Azevedo-Pereira, H. M. V. S., Abreu, S. N., Lemos, M. F. L., & Soares, A. M. V. M. (2012). Bioaccumulation and elimination of waterborne mercury in the midge larvae, Chironomus riparius Meigen (Diptera: Chironomidae). Bull. Environ. Contam. Toxicol., 89, 245-250. DOI: 10.1007/s00128-012-0674-z.CrossrefWeb of ScienceGoogle Scholar

  • 17. Oughton, D. H., Hertel-AAS, T., Pollicer, E., Mendoza, E., & Joner, E. J. (2008). Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ. Toxicol. Chem., 27(9), 1883-1887. DOI: 10.1897/07-578.1.CrossrefWeb of ScienceGoogle Scholar

  • 18. Bystrzejewska-Piotrowska, G., Asztemborska, M., Steborowski, R., Ryniewicz, J., Polkowska-Motrenko, H., & Danko, B. (2012). Application of neutron activaton for investigation of Fe3O4 nanoparticles accumulation by plants. Nukleonika, 57(3), 427-430.Google Scholar

About the article

Received: 2014-10-02

Accepted: 2014-10-27

Published Online: 2014-12-30

Published in Print: 2014-12-01


Citation Information: Nukleonika, ISSN (Online) 0029-5922, DOI: https://doi.org/10.2478/nuka-2014-0023.

Export Citation

© by Monika Asztemborska. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alaa El-Din H. Sayed and Hamdy A.M. Soliman
Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2017, Volume 822, Page 34
[2]
Maciej Milanowski, Paweł Pomastowski, Viorica Railean-Plugaru, Katarzyna Rafińska, Tomasz Ligor, Bogusław Buszewski, and Vijai Gupta
PLOS ONE, 2017, Volume 12, Number 3, Page e0174521
[3]
Steffen Foss Hansen, Sara Nørgaard Sørensen, Lars Michael Skjolding, Nanna B. Hartmann, and Anders Baun
Environmental Sciences Europe, 2017, Volume 29, Number 1
[4]
Yongguang Yin, Zhiqiang Tan, Ligang Hu, Sujuan Yu, Jingfu Liu, and Guibin Jiang
Chemical Reviews, 2017, Volume 117, Number 5, Page 4462
[5]
Lars Michael Skjolding, Sara Nørgaard Sørensen, Nanna Bloch Hartmann, Rune Hjorth, Steffen Foss Hansen, and Anders Baun
Angewandte Chemie, 2016, Volume 128, Number 49, Page 15448
[6]
Lars Michael Skjolding, Sara Nørgaard Sørensen, Nanna Bloch Hartmann, Rune Hjorth, Steffen Foss Hansen, and Anders Baun
Angewandte Chemie International Edition, 2016, Volume 55, Number 49, Page 15224

Comments (0)

Please log in or register to comment.
Log in