Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

4 Issues per year


IMPACT FACTOR 2016: 0.760

CiteScore 2016: 0.55

SCImago Journal Rank (SJR) 2015: 0.205
Source Normalized Impact per Paper (SNIP) 2015: 0.461

Open Access
Online
ISSN
0029-5922
See all formats and pricing
More options …

Analysis of heat capacity and Mössbauer data for LuZnSn2 compound

Kazimierz Łątka
  • M. Smoluchowski Institute of Physics, Jagiellonian University, 11 Prof. S. Łojasiewicza Str., 30-348 Kraków, Poland, Tel.: +48 12 663 5668, Fax: +48 12 633 7086
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janusz Przewoźnik
  • Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Żukrowski
  • Academic Centre for Materials and Nanotechnology and Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuriy Verbovytskyy
  • Department of Hydrogen Technologies and Hydride Materials Science, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova Str., 79-060 Lviv, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Pereira Gonçalves
  • Campus Tecnológico e Nuclear, Instituto Superior Técnico/CFMC, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-12 | DOI: https://doi.org/10.1515/nuka-2015-0020

Abstract

New analysis of heat capacity data is presented for LuZnSn2 compound that takes into account anharmonic effects together with the existence of Einstein modes. 119mSn Mössbauer spectroscopy was used to monitor the hyperfine parameters at the two crystallographically inequivalent Sn sites in the studied compound. The problem of non-unique mathematical resonance spectrum description and the problem how to choose physically meaningful set of hyperfine parameters will be thoroughly discussed. Measured quadrupole interaction constants by 119mSn Mössbauer spectroscopy give estimations for Vzz component of electric field gradient tensor at both Sn sites in LuZnSn2.

Keywords: heat capacity; Mössbauer studies; rare earth ternary compounds

References

  • 1. Verbovytskyy, Yu., Łątka, K., Przewoźnik, J., Leal, N., & Gonçalves, A. P. (2012). On the new ternary RZnSn2 compounds with HfCuSi2 structure type. Intermetallics, 20, 176–182. DOI: 10.1016/j.intermet.2011.08.024.Web of ScienceCrossrefGoogle Scholar

  • 2. Görlich, E. A., Kmieć, R., Łątka, K., Matlak, T., Ruebenbauer, K., Szytuła, A., & Tomala, K. (1975). Transferred hyperfine fields at the tin site in the Heusler-type alloys Co2YSn (Y=Ti, Zr, Hf, V). Phys. Status Solidi A-Appl. Mat., 30, 765–770. DOI: 10.1002/pssa.2210300237.CrossrefGoogle Scholar

  • 3. Görlich, E. A., Kmieć, R., Łątka, K., Szytuła, A., & Zygmunt, A. (1994). Magnetic properties and 119Sn hyperfine interactions investigated in RCoSn (R = Tb, Dy, Ho, Er) compounds. J. Phys.-Condens. Matter, 6, 11127–11139. DOI: 10.1088/0953-8984/6/50/020.CrossrefGoogle Scholar

  • 4. Troć, R., Tran, V. H., Kolenda, M., Kruk, R., Łątka, K., Szytuła, A., Rossat-Mignod, J., Bonnet, M., & Büchner, B. (1995). X-ray and neutron diffraction studies of UPdSn. J. Magn. Magn. Mater., 151, 102–110. DOI: 10.1016/0304-8853(95)00396-7.CrossrefGoogle Scholar

  • 5. Kruk, R., Kmieć, R., Łątka, K., Tomala, K., Troć, R., & Tran, V. H. (1996). 119Sn Mössbauer studies of the compound UAuSn. J. Alloy. Compd., 232, L8–L11. DOI: 10.1016/0925-8388(95)02008-X.CrossrefGoogle Scholar

  • 6. Kruk, R., Kmieć, R., Łątka K., Tomala, K., Troć, R., & Tran, V. H. (1997). Magnetic properties of UTSn compounds (T = Co, Rh, Ir, Ru) studied by 119Sn Mössbauer spectroscopy. Phys. Rev. B, 55, 5851–5857. DOI: 10.1103/PhysRevB.55.5851.CrossrefGoogle Scholar

  • 7. Łątka, K., Görlich, E. A., Chajec, W., Kmieć, R., & Pacyna, A. W. J. (1997). Crystal and magnetic properties of GdTSn compounds (T = Ag, Au). J. Alloy. Compd., 262/263, 108–113.Google Scholar

  • 8. Łątka, K., Görlich, E. A., Kmieć, R., Kruk, R., Pacyna, A. W. J., & Chajec, W. (1998). Looking at unusual magnetism in rare-earth intermetallics with 119Sn Mössbauer spectroscopy. Mol. Phys. Rep., 22, 87–97.Google Scholar

  • 9. Görlich, E. A., Łątka, K., Kmieć, R., & Warkocki, W. (1998). Hyperfine interactions of 155Gd in the spin-glass systems GdAgSn and GdAuSn. Mol. Phys. Rep., 22, 35–40.Google Scholar

  • 10. Łątka, K., Kmieć, R., & Gurgul, J. (2001). 119Sn Mössbauer spectroscopy studies of RAgSn compounds (R=La, Ce, Pr). J. Alloy. Compd., 319, 43–49. DOI: 10.1016/S0925-8388(01)00896-9.CrossrefGoogle Scholar

  • 11. Łątka, K., Chajec, W., Kmieć, R., & Pacyna, A. W. J. (2001). Magnetic susceptibility and 119Sn Mössbauer spectroscopy studies of RAuSn compounds (R=La, Ce, Pr). J. Magn. Magn. Mater., 224, 241–248. DOI: 10.1016/S0304-8853(01)00035-X.CrossrefGoogle Scholar

  • 12. Łątka, K., Kmieć, R., Kruk, R., Pacyna, A. W., Rams, M., Schmidt, T., & Pöttgen, R. (2003). Exotic phase transitions in RERhSn compounds. Nukleonika, 48(Suppl. 1), 35–40.Google Scholar

  • 13. Łątka, K., Kmieć, R., Kruk, R., Pacyna, A. W., Rams, M., Schmidt, T., Kotzyba, G., Pöttgen, R., & Johrendt, D. (2003). Structure and properties of CeRhSn – a valence fluctuating system. Acta Phys. Pol. B, 34(2), 1225–1229.Google Scholar

  • 14. Łątka, K., Kmieć, R., Gurgul, J., Rams, M., Pacyna, A. W., Schmidt, T., & Pöttgen, R. (2005). Structure, magnetic properties and 119Sn Mössbauer spectroscopy of PrRhSn. J. Solid State Chem., 178, 3101–3109. DOI: 10.1016/j.jssc.2005.06.041.CrossrefGoogle Scholar

  • 15. Schmidt, T., Johrendt, D., Sebastian, C. P., Pöttgen, R., Łątka, K., & Kmieć, R. (2005). Structure, chemical bonding, and 119Sn Mössbauer spectroscopy of LaRhSn and CeRhSn. Z. Naturforsch., 60b, 1036–1042.Google Scholar

  • 16. Łątka, K., Kmieć, R., Kruk, R., Pacyna, A. W., Fickenscher, T., Hoffmann, R.-D., & Pöttgen, R. (2005). Structure, magnetic properties and Mössbauer spectroscopy of GdRhSn. J. Solid State Chem., 178, 2077–2090. DOI: 10.1016/j.jssc.2005.04.010.CrossrefGoogle Scholar

  • 17. Łątka, K., Kmieć, R., Gurgul, J., Pacyna, A. W., Rams, M., Schmidt, T., & Pöttgen, R. (2006). Magnetic ordering in NdRhSn. J. Magn. Magn. Mater., 301, 359–370. DOI: 10.1016/j.jmmm.2005.07.009.CrossrefGoogle Scholar

  • 18. Łątka, K., Kmieć, R., Kruk, R., Pacyna, A. W., Rams, M., Schmidt, T., & Pöttgen, R. (2008). Electronic and magnetic properties of ternary stannides RERhSn (RE=light rare-earth metals). J. Magn. Magn. Mater., 320(3/4), L18–L20. DOI: 10.1016/j.jmmm.2007.05.031.CrossrefGoogle Scholar

  • 19. Łątka, K., Pacyna, W., Pöttgen, R., & Schappacher, F. M. (2008). Puzzling magnetism of Gd3Cu4Sn4. Acta Phys. Pol. A, 114, 1501–1508.Google Scholar

  • 20. Łątka, K., Kruk, R., Kmieć, R., Troć, R., & Tran, V. H. (2010). 119Sn Mössbauer spectroscopy in the heavy-fermion ferrimagnet UCu5Sn”. J. Phys.-Conf. Series, 217, 012136(1–4). DOI: 10.1088/1742-6596/217/1/012136.CrossrefGoogle Scholar

  • 21. Görlich, E. A., Łątka, K., Kmieć, R., Tomkowicz, Z., & Warkocki, W. (2000). Hyperfine interactions of 119Sn and 155Gd versus bulk properties of GdTxSn2 phases. Mol. Phys. Rep., 30, 59–65.Google Scholar

  • 22. Łątka, K., Przewoźnik, J., Verbovytskyy, Yu., & Gonçalves, A. P. (2013). Thermodynamic properties of RZnSn2 (R = Y, Er, Lu) compounds with HfCuSi2 structure type. Solid State Phenomena, 194, 67–70. DOI: 10.4028/www.scientific.net/SSP.194.67.Crossref

  • 23. Rodriguez-Carvajal, J., & Roisnel, T. (1998). Full-Prof.98 and WinPLOTR: New Windows 95/NT Applications for Diffraction Commission for Powder Diffraction, International Union for Crystallography, Newsletter no. 20 (May–August) Summer.Google Scholar

  • 24. Stevens, J. G., & Gettys, W. I. (1978). Mössbauer isomer shift reference scales. In G. K. Shenoy & F. E. Wagner (Eds.), Mössbauer isomer shifts (pp. 901–906). Amsterdam: North-Holland Publishing Co.Google Scholar

  • 25. Flinn, P. (1978). Tin isomer shifts. In G. K. Shenoy & F. E. Wagner (Eds.), Mössbauer isomer shifts (pp. 593–616). Amsterdam: North-Holland Publishing Co.Google Scholar

  • 26. Mössbauer Effect Data Center (MEDC). (2010, July). Properties of isotopes relevant to Mössbauer spectroscopy. 119Sn isotope properties. Retrieved June 3, 2014, from http://www.medc.dicp.ac.cn/Resourcesisotopes/Resource-Sn.php.

About the article

Received: 2014-06-18

Accepted: 2014-11-02

Published Online: 2015-03-12

Published in Print: 2015-03-01


Citation Information: Nukleonika, ISSN (Online) 0029-5922, DOI: https://doi.org/10.1515/nuka-2015-0020.

Export Citation

© Kazimierz Łątka, Janusz Przewoźnik, Jan Żukrowski, Yuriy Verbovytskyy, Antonio Pereira Gonçalves. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kazimierz Łątka, Janusz Przewoźnik, Jan Żukrowski, Yuriy Verbovytskyy, and Antonio Pereira Gonçalves
Nukleonika, 2017, Volume 62, Number 2

Comments (0)

Please log in or register to comment.
Log in