Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Instytut Chemii i Techniki Jadrowej

4 Issues per year

IMPACT FACTOR 2016: 0.760

CiteScore 2016: 0.55

SCImago Journal Rank (SJR) 2015: 0.205
Source Normalized Impact per Paper (SNIP) 2015: 0.461

Open Access
See all formats and pricing
More options …

Generation of shock waves in dense plasmas by high-intensity laser pulses

John Pasley
  • Corresponding author
  • Plasma Physics and Fusion Group, Department of Physics, University of York, Heslington, York, YO10 5DD, U.K. and Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K., Tel.: 01904 322 276
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. A. Bush
  • Plasma Physics and Fusion Group, Department of Physics, University of York, Heslington, York, YO10 5DD, U.K. and Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K., Tel.: 01904 322 276
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander P. L. Robinson / P. P. Rajeev / S. Mondal / A. D. Lad / S. Ahmed / V. Narayanan / G. Ravindra Kumar / Robert J. Kingham
  • Plasma Physics Group, Department of Physics, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2BZ, U.K.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-22 | DOI: https://doi.org/10.1515/nuka-2015-0056


When intense short-pulse laser beams (I > 1022 W/m2, τ < 20 ps) interact with high density plasmas, strong shock waves are launched. These shock waves may be generated by a range of processes, and the relative significance of the various mechanisms driving the formation of these shock waves is not well understood. It is challenging to obtain experimental data on shock waves near the focus of such intense laser–plasma interactions. The hydrodynamics of such interactions is, however, of great importance to fast ignition based inertial confinement fusion schemes as it places limits upon the time available for depositing energy in the compressed fuel, and thereby directly affects the laser requirements. In this manuscript we present the results of magnetohydrodynamic simulations showing the formation of shock waves under such conditions, driven by the j × B force and the thermal pressure gradient (where j is the current density and B the magnetic field strength). The time it takes for shock waves to form is evaluated over a wide range of material and current densities. It is shown that the formation of intense relativistic electron current driven shock waves and other related hydrodynamic phenomena may be expected over time scales of relevance to intense laser–plasma experiments and the fast ignition approach to inertial confinement fusion. A newly emerging technique for studying such interactions is also discussed. This approach is based upon Doppler spectroscopy and offers promise for investigating early time shock wave hydrodynamics launched by intense laser pulses.

Keywords: shock waves; radiation hydrodynamics; laser–plasma interactions; fast ignition; inertial confinement fusion; Doppler spectroscopy


  • 1. Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, W. M., Perry, M. D., & Mason, R. J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626–1634. http://dx.doi.org/10.1063/1.870664.Crossref

  • 2. Nuckolls, J., Wood, L., Thiessen, A., & Zimmerman, G. (1972). Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature, 239, 139–142.Google Scholar

  • 3. Tabak, M., Hammer, J., Campbell, H. E. M., & et al. (2001). IL8826B, 1997. Lawrence Livermore National Laboratory patent disclosure. Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar

  • 4. Hatchett, S., & Tabak, M. (2000). Cone focus geometry for fast ignition. In 30th Annual Anomalous Absorption Conference, Ocean City, MD, April 2000.Google Scholar

  • 5. Hatchett, S., Herrmann, M., Tabak, M., & et al. (2001). Developments in design of cone-focused fast ignition. Bull. Am. Phys. Soc., 46, 47.Google Scholar

  • 6. Roth, M., Cowan, T. E., Key, M. H., Hatchett, S. P., Brown, C., Fountain, W., Johnson, J., Pennington, D. M., Snavely, R. A., Wilks, S. C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S. V., Campbell, E. M., Perry, M. D., & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett., 86(3), 436–439.PubMedCrossrefGoogle Scholar

  • 7. Naumova, N., Schlegel, T., Tikhonchuk, V. T., Labaune, C., Sokolov, I. V., & Mourou, G. (2009). Hole boring in a DT pellet and fast-ion ifnition with ultraintensive laser pulses. Phys. Rev. Lett., 102, 025002.Web of ScienceGoogle Scholar

  • 8. Bush, I. A., Robinson, A. P. L., Kingham, R. J., & Pasley, J. (2010). Cavitation and shock wave formation in dense plasmas by relativistic electron beams. Plasma Phys. Control. Fusion, 52, 125007.Web of ScienceGoogle Scholar

  • 9. Ziegler, U. (2004). A central-constrained transport scheme for ideal magnetohydrodynamics. J. Comput. Phys., 196, 393–416.Google Scholar

  • 10. Ditmire, T., Shigemori, K., Remington, B. A., Estabrook, K., & Smith, R. A. (2000). The production of strong blast waves through intense laser irradiation of atomic clusters. Astrophys. J. Suppl. Ser., 127, 299.Google Scholar

  • 11. Edwards, M. J., MacKinnon, A. J., Zweiback, J., Shigemori, K., Ryutov, D., Rubenchik, A. M., Keilty, K. A., Liang, E., Remington, B. A., & Ditmire, T. (2001). Investigation of ultrafast laser-driven radiative blast waves. Phys. Rev. Lett., 87, 085004.Google Scholar

  • 12. Akli, K. U., Hansen, S. B., Kemp, A. J., Freeman, R. R., Beg, F. N., Clark, D. C., Chen, S. D., Hey, D., Hatchett, S. P., Highbarger, K., Giraldez, E., Green, J. S., Gregori, G., Lancaster, K. L., Ma, T., Mackinnon, A. J., Norreys, P., Patel, N., Pasley, J., Shearer, C., Stephens, R. B., Stoeckl, C., Storm, M., Theobald, W., Van Woerkom, L. D., Weber, R., & Key, M. H. (2008). Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities. Phys. Rev. Lett., 100, 165002.Web of ScienceGoogle Scholar

  • 13. Mondal, S., Lad, A. D., Ahmed, S., Narayanan, V., Pasley, J., Rajeev, P. P., Robinson, A. P. L., & Ravindra Kumar, G. (2010). Doppler spectrometry for ultrafast temporal mapping of density dynamics in laser-induced plasmas. Phys. Rev. Lett., 105, 105002.Web of ScienceGoogle Scholar

About the article

Received: 2014-06-16

Accepted: 2014-10-31

Published Online: 2015-06-22

Published in Print: 2015-06-01

Citation Information: Nukleonika, Volume 60, Issue 2, Pages 193–198, ISSN (Online) 0029-5922, DOI: https://doi.org/10.1515/nuka-2015-0056.

Export Citation

© John Pasley et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

S. Islam, S. Sultana, and A. A. Mamun
Physics of Plasmas, 2017, Volume 24, Number 9, Page 092308

Comments (0)

Please log in or register to comment.
Log in