Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

4 Issues per year


IMPACT FACTOR 2016: 0.760

CiteScore 2016: 0.55

SCImago Journal Rank (SJR) 2015: 0.205
Source Normalized Impact per Paper (SNIP) 2015: 0.461

Open Access
Online
ISSN
0029-5922
See all formats and pricing
More options …

235U isotopic characterization of natural and enriched uranium materials by using multigroup analysis (MGA) method at a defined geometry using different absorbers and collimators

Haluk Yücel / Emin Yeltepe
  • TAEK-Sarayköy Nuclear Research and Training Center, Atom Cad. No. 27, 06983, Sarayköy, Ankara, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alptuğ Özer Yüksel / Hasan Dikmen
  • TAEK-Sarayköy Nuclear Research and Training Center, Atom Cad. No. 27, 06983, Sarayköy, Ankara, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/nuka-2015-0114

Abstract

Characterization of nuclear materials is an important topic within the context of nuclear safeguards, homeland security and nuclear forensics. This paper deals with the performance of multigroup gamma-ray analysis (MGA) method using the X- and γ-rays in the 80-130 keV region and enrichment meter principle (EMP) based on the analysis of 185.7 keV peak for a certain geometry using different absorbers and collimators. The results from MGA and those of EMP are compared. In particular, the effect of aluminum/lead absorbers and lead collimator on the enrichment determination of 235U in natural and low enriched samples is investigated in a given source-detector geometry. The optimum diameter/height ratio for the Pb-collimator is found to be Dc/Hc = 1.4-1.6 in the chosen geometry. In order to simulate the container walls, ten different thicknesses of Al-absorbers of 141 to 840 mg·cm-2 and six different thicknesses of Pb-absorbers of 1120-7367 mg·cm-2 are interposed between sample and detector. The calibration coefficients (% enrichment/cps) are calculated for each geometry. The comparison of the MGA and EMP methods shows that the enrichment meter principle provides more accurate and precise results for 235U abundance than those of MGA method at the chosen geometrical conditions. The present results suggest that a two-step procedure should be used in analyses of uranium enrichment. Firstly MGA method can be applied in situ and then EMP method can be used at a defined geometry in laboratory.

Keywords: nuclear safeguards · enrichment measurements · uranium · multigroup analysis · enrichment meter principle

References

  • 1. Hofstetter, K. J., & Beals, D. M. (2005). Comparison of CdTe and CdZnTe detectors for fi eld determination of uranium isotopic enrichments. J. Radioanal. Nucl. Chem., 263(1), 171-176.Google Scholar

  • 2. Desideri, D., Meli, M. A., Roselli, C., & Testa, C. (2004). Analytical techniques for the separation and determination of transuranium element ultratraces in depleted uranium ammunitions. Int. J. Environ. Anal. Chem., 84(5), 331-339.Google Scholar

  • 3. Mortreau, P., & Berndt, R. (2005). Attenuation of a non-parallel beam of gamma radiation by thick shielding - application to the determination of the 235U enrichment with NaI detectors. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 550, 675-690.Google Scholar

  • 4. Korob, R. O., & Blasiyh Nuňo, G. A. (2006). A simple method for the absolute determination of uranium enrichment by high-resolution · spectrometry. Appl. Radiat. Isot., 64(5), 525-531.CrossrefGoogle Scholar

  • 5. Ramebäck, H., Vesterlund, A., Tovedal, A. Nygren, U., Wallberg, L., Holm, E., Ekberg, C., & Skarnemark, G. (2010). The jackknife as an approach for uncertainty assessment in gamma spectrometric measurements of uranium isotope ratios. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268(16), 2535-2538. DOI: 10.1016/j. nimb.2010.05.055.CrossrefGoogle Scholar

  • 6. Smith Jr, H. A. (1991). The measurement of uranium enrichment. In Passive nondestructive assay of nuclear materials. (NUREG/CR-5550).Google Scholar

  • 7. Abousahl, S., Michiels, A., Bickel, M., Gunnink, R., & Verplancke, J. (1996). Applicability and limits of the MGAU code for the determination of the enrichment of uranium samples. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 368(2), 443-448.Google Scholar

  • 8. Berlizov, A. N. Gunnink, R., Zsigari, J. Nguyen, C. T., & Tryshyn, V. V. (2007). Performance testing of the upgraded uranium isotopics multi-group analysis code MGAU. Nucl. Instrum. Methods Phys. Res. Sect. AAccel. Spectrom. Dect. Assoc. Equip., 575, 498-506. DOI: 10.1016/j.nima.2007.02.099.CrossrefGoogle Scholar

  • 9. Morel, J., Hill, C., Bickel, M., Alonso-Munoz, A., Napier, S., & Thaurel, B. (2000). Results from the international evaluation exercise for uranium enrichment measurements. Appl. Radiat. Isot., 52(3), 509-522.CrossrefGoogle Scholar

  • 10. Dragnev, T. (1993). Intrinsically calibrated gamma and x-ray measurements of plutonium. Appl. Radiat. Isot., 44(3), 613-619. DOI: 10.1016/0969-8043(93)90178-D.CrossrefGoogle Scholar

  • 11. Gunnink, R., Ruhter, W. D., Miller, P., Goerten, J., Swinhoe, M., Wagner, H., Verplancke, J., Bickel, M., & Abousahl, S. (1994). MGA: A new analysis code for measuring U-235 enrichments in arbitrary samples. In IAEA Symposium on International Safeguards, Vienna, Austria, March 8-14, 1994. Lawrence Livermore National Laboratory. (UCRL-JC-114713).Google Scholar

  • 12. Gunnink, R., & Ruhter, W. D. (1990). MGA: A gamma- ray spectrum analysis for determining plutonium isotopic abundances. Lawrence Livermore National Laboratory. (UCRL-103220, Vols. 1-2).Google Scholar

  • 13. Clark, D. (1996). U235: A gamma-ray spectrum analysis code for uranium isotopic determination. Lawrence Livermore National Laboratory. (UCRLID-125727).Google Scholar

  • 14. Clark, D. (1998). The CZTU uranium concentration analysis code. Lawrence Livermore National Laboratory. (UCRL-IC-131172).Google Scholar

  • 15. Yücel, H., & Dikmen, H. (2009). Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXKα spectral region. Talanta, 78(2), 410-417.Web of ScienceGoogle Scholar

  • 16. Yücel, H. (2007). The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides (232Th, 237Np, 233Pa and 241Am). Appl. Radiat. Isot., 65(11), 1269-1280. DOI: 10.1016/j.apradiso.2007.05.07Web of ScienceCrossrefGoogle Scholar

  • 17. Nir-El, Y. (2000). Isotopic analysis of uranium in U3O8 by passive gamma-ray spectrometry. Appl. Radiat. Isot., 52(3), 753-757.CrossrefGoogle Scholar

About the article

Received: 2014-09-24

Accepted: 2015-05-20

Published Online: 2015-09-25

Published in Print: 2015-09-01


Citation Information: Nukleonika, Volume 60, Issue 3, Pages 615–620, ISSN (Online) 0029-5922, DOI: https://doi.org/10.1515/nuka-2015-0114.

Export Citation

© by Haluk Yücel. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in