Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

4 Issues per year


IMPACT FACTOR 2016: 0.760

CiteScore 2016: 0.55

SCImago Journal Rank (SJR) 2015: 0.205
Source Normalized Impact per Paper (SNIP) 2015: 0.461

Open Access
Online
ISSN
0029-5922
See all formats and pricing
More options …

The influence of air conditioning changes on the effective dose due to radon and its short-lived decay products

Dominik Grządziel
  • Corresponding author
  • Institute of Nuclear Physics PAN, 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 8330, Fax: +48 12 662 8458
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Kozak
  • Institute of Nuclear Physics PAN, 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 8330, Fax: +48 12 662 8458
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jadwiga Mazur
  • Institute of Nuclear Physics PAN, 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 8330, Fax: +48 12 662 8458
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernard Połednik / Marzenna R. Dudzińska / Izabela Bilska
Published Online: 2016-09-10 | DOI: https://doi.org/10.1515/nuka-2016-0040

Abstract

Most people spend the majority of their time in indoor environments where the level of harmful pollutants is often significantly higher than outdoors. Radon (222Rn) and its decay products are the example of radioactive pollutants. These radioisotopes are the main source of ionizing radiation in non-industrial buildings. The aim of the study was to determine the impact of air-conditioning system on radon and its progeny concentrations and thus on the effective dose. The measurements were carried out in the auditorium at the Environmental Engineering Faculty (Lublin University of Technology, Poland). Measurements of radon and its progeny (in attached and unattached fractions) as well as measurements of the following indoor air parameters were performed in two air-conditioning (AC) operation modes: AC ON and AC ON/OFF. The air supply rate and air recirculation were taken into consideration. The separation of radon progeny into attached and unattached fractions allowed for determining, respectively, the dose conversion factor (DCF) and the inhalation dose for teachers and students in the auditorium. A considerable increase of the mean radon progeny concentrations from 1.2 Bq/m3 to 5.0 Bq/m3 was observed in the AC ON/OFF mode compared to the AC ON mode. This also resulted in the increase of the inhalation dose from 0.005 mSv/y to 0.016 mSv/y (for 200 h/year). Furthermore, the change of the air recirculation rate from 0% to 80% resulted in a decrease of the mean radon concentration from 30 Bq/m3 to 12 Bq/m3 and the reduction of the mean radon progeny concentration from 1.4 Bq/m3 to 0.8 Bq/m3. This resulted in the reduction of the inhalation dose from 0.006 mSv/y to 0.003 mSv/y.

Keywords: radon; radon progeny; attached and unattached fraction of radon progeny; dose conversion factor

References

  • 1.

    National Atomic Energy Agency. (2015). Annual report on the activities of the President of the National Atomic Energy Agency and assessment of nuclear safety and radiological protection in Poland in 2014. Warszawa: Państwowa Agencja Atomistyki (in Polish).Google Scholar

  • 2.

    Kozak, K., Mazur, J., Kozlowska, B., Karpińska, M., Przylibski, T. A., Mamont-Cieśla, K., Grządziel, D., Stawarz, O., Wysocka, M., Dorda, J., Żebrowski, A., Olszewski, J., Hovhannisyan, H., Dohojda, M., Kapała, J., Chmielewska, I., Kłos, B., Jankowski, J., Mnich, S., & Kołodziej, R. (2011). Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon. Appl. Radiat. Isot., 69, 1459–1465.Google Scholar

  • 3.

    Somlai, J., Jobbágy, V., Kovács, J., Németh, Cs., & Kovács, T. (2008). Connection between radon emanation and some structural properties of coal-slag as building material. Radiat. Meas., 43(1), 72–76.Google Scholar

  • 4.

    Kovler, K. (2012). Does the utilization of coal fly ash in concrete construction present a radiation hazard? Constr. Build. Mater., 29, 158–166.Web of ScienceGoogle Scholar

  • 5.

    Połednik, B., Dudzińska, M. R., Kozak, K., Mazur, J., & Gazda, L. (2012). The impact of the indoor air parameters on the dynamics of radon and its decay products concentration changes. In Proceedings of Healthy Building, 8–12 July 2012 (pp. 2B.8). Brisbane, Australia.Google Scholar

  • 6.

    Kávási, N., Kovács, T., Németh, C., Szabó, T., Gorjánácz, Z., Várhegyi, A., Hakl, J., & Somlai, J. (2006). Difficulties in radon measurements at workplaces. Radiat. Meas., 41, 229–234.Google Scholar

  • 7.

    Marley, F., & Phillips, P. S. (2001). Investigation of the potential for radon mitigation by operation of mechanical systems affecting indoor air. J. Environ. Radioact., 54, 205–219.Google Scholar

  • 8.

    Karpińska, M., Mnich, Z., & Kapała, J. (2004). Seasonal changes in radon concentrations in buildings in the region of northeastern Poland. J. Environ. Radioact., 77(2), 101–109.Google Scholar

  • 9.

    Moriizumi, J., Yamada, S., Xu, Y., Matsuki, S., Hirao, S., & Yamazawa, H. (2014). Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations. Radiat. Prot. Dosim., 160(1/3), 196–201. .CrossrefGoogle Scholar

  • 10.

    Darby, S., Hill, D., Auvinen, A., Barros-Dios, J. M., Baysson, H., Bochicchio, F., Deo, H., Falk, R., Forastiere, F., Hakama, M., Heid, I., Kreienbrock, L., Kreuzer, M., Lagarde, F., Mäkeläinen, I., Muirhead, C., Oberaigner, W., Pershagen, G., Ruano-Ravina, A., Ruosteenoja, E., Rosario, A. S., Tirmarche, M., Tomásek, L., Whitley, E., Wichmann, H. E., & Doll, R. (2005). Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Br. Med. J., 330, 223–227.Google Scholar

  • 11.

    Ramola, R. C., Negi, M. S., & Choubey, V. M. (2003). Measurement of equilibrium factor “F” between radon and its progeny and thoron and its progeny in the indoor atmosphere using nuclear track detectors. Indoor Built Environ., 12, 351–355.Google Scholar

  • 12.

    Forkapić, S., Mrđa, D., Vesković, M., Todorović, N., Bikit, K., Nikolov, J., & Hansman, J. (2013). Radon equilibrium measurement in the air. Rom. J. Phys., 58, S140–S147.Google Scholar

  • 13.

    UNSCEAR. (2000). United Nations Scientific Committee on the Effect of Atomic Radiation exposures from natural radiation sources. Report to General Assembly. Annex B. New York: UN.Google Scholar

  • 14.

    Kozak, K., Grządziel, D., Połednik, B., Mazur, J., Dudzińska, M. R., & Mroczek, M. (2014). Air conditioning impact on the dynamics of radon and its daughters concentration. Radiat. Prot. Dosim., 162(4), 663–673.Google Scholar

  • 15.

    Nero Jr, A. V. (1988). Radon and its decay products in indoor air – an overview. In W. W. Nazarov, & A. V. Nero (Eds.), Radon and its decay products in indoor air (pp. 1–53). New York: Wiley Interscience.Google Scholar

  • 16.

    Porstendörfer, J. (1996). Radon: measurements related to dose. Environ. Int., 22(Suppl. 1), S563–S583.Google Scholar

  • 17.

    Bennett, W. D., Zeman, K. L., & Jarabek, A. M. (2003). Nasal contribution to breathing with exercise: effect of race and gender. J. Appl. Physiol., 95(2), 497–503.Google Scholar

About the article

Received: 2016-01-19

Accepted: 2016-03-23

Published Online: 2016-09-10

Published in Print: 2016-09-01


Citation Information: Nukleonika, ISSN (Online) 0029-5922, DOI: https://doi.org/10.1515/nuka-2016-0040.

Export Citation

© 2016 Dominik Grządziel et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in