Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

1 Issue per year

Open Access
See all formats and pricing
More options …

Contrast-phase Imaging of Fixed-Cells through Micro-Cavity Scanning Microscopy

Andrea Di Donato
  • Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, 60131, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Pietrangelo
  • Dept. of Neuroscience and Imaging, Università “G. d’Annunzio’, Via dei Vestini, 66013, Chieti Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Da Ros / Tamara Monti
  • Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, 60131, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Farina
  • Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, 60131, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-27 | DOI: https://doi.org/10.2478/odps-2014-0003


Contrast phase imaging at infrared wavelengths is achieved through an extrinsic Fabry-Perot cavity in optical fiber. The micro-cavity is realized by approaching a cleaved fiber to a distance of about few tens of microns from the surface under test. The probe is a single mode fiber and is fed by a low-coherence source. The information is extracted from the reflected spectrum, that starts to be modulated by the interference when the fiber begins to interact with the sample. The measurement of the reflected optical intensity provides a map of the sample reflectivity, whereas from the analysis of the spectrum in the time/spatial domain, it is possible to extract topography and refractive index variations. This information is entangled in the contrast phase image obtained. In this work we review the system proposed in [19] in order to extract topography and local surface permittivity of biological samples. The system displays tridimensional images with a transverse resolution that is not limited by the numerical aperture NA of the scanning probe (as suggested by the Rayleigh limit), but it is related to the transverse field behavior of the electromagnetic field inside the micro-cavity. Differently, the source bandwidth, demodulation algorithm and optical spectrum analyzer resolution affect the resolution in the normal direction.

Keywords: scanning microscopy; micro-cavity; lowcoherence interferometry


  • [1] Bing Yu et al. “Analysis of Fiber Fabry-Perot Interferometric Sensors Using Low-Coherence Light Sources,” IEEE Journal of Lightwave Technology, vol. 24 , No. 4, April 2006, pp. 1758 – 1767. CrossrefGoogle Scholar

  • [2] K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, "Extrinsic Fabry–Pérot optical fiber sensor", in Proc. 8th Opt. Fiber Sens. Conf., 1992, pp.193 -196. Google Scholar

  • [3] N. Furstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, "Extrinsic Fabry–Pérot interferometer vibration and acoustic systems for airport ground traffic monitoring", in Proc. Inst. Elect. Eng.—Optoelectron., vol. 144, No. 3, 1997, pp.134 -144. Google Scholar

  • [4] A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, "Self-calibrated interferometric-intensity-based optical fiber sensors", IEEE Journal of Lightwave Technology, vol. 19, No. 10, pp.1495 -1501, 2001 CrossrefGoogle Scholar

  • [5] H.-Y. Yao and T.-H. Chang, "Experimental and Theoretical Studies of a Broadband Superluminality in Fabry-Perot Interferometer", Progress In Electromagnetics Research, vol. 122, pp. 1-13, 2012. Web of ScienceGoogle Scholar

  • [6] F. Costa and A. Monorchio, “Design of Subwavelength Tunable and Steerable Fabry-Perot/Leaky Wave Antennas”, Progress In Electromagnetics Research , vol. 111, pp. 467-481, 2011. Web of ScienceGoogle Scholar

  • [7] M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, "Signalprocessing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors", Optics Letters, vol. 29, No.15, pp. 1736-1738, August 2004. CrossrefGoogle Scholar

  • [8] J. H. Chen, J. R. Zhao, X. G. Huang, Z. J. Huang, "Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass", Applied Optics, vol.49, No. 29, pp. 5592-5596, October 2010. CrossrefGoogle Scholar

  • [9] Xinlei Zhou and Qingxu Yu, "Wide-Range Displacement Sensor Based on Fiber-Optic Fabry–Perot Interferometer for Subnanometer Measurement", IEEE Sensors Journal, vol. 11 , No. 7, pp. 1602 – 1606, July 2011. Web of ScienceCrossrefGoogle Scholar

  • [10] Y. Zhang, H. Shibru, K. L. Cooper and A. Wang, "Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor", Optics Letters, vol. 30, No. 9, pp. 1021-1023, May 2005. CrossrefGoogle Scholar

  • [11] P. R. Wilkinson and J. R. Pratt, "Analytical model for low fi- nesse, external cavity, fiber Fabry–Perot interferometers including multiple reflections and angular misalignment", Applied Optics, Vol. 50, No. 23, pp. 4671-4680, August 2011. Web of ScienceCrossrefGoogle Scholar

  • [12] O. Kilic, Michel J. F. Digonnet, Gordon S. Kino and O. Solgaard, "Asymmetrical Spectral Response in Fiber Fabry–Pérot Interferometers", IEEE Journal of Lightwave Technology, Vol. 27, No. 24, pp. 5648-5656, December 2009. Web of ScienceCrossrefGoogle Scholar

  • [13] D. J. Daniels, Ground Penetrating Radar, 2nd edition, IET, London, 2007. Google Scholar

  • [14] B. Bouma, and G. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker, 2002. Google Scholar

  • [15] S. O. Isikman et al., “Lensfree On-Chip Microscopy and Tomography for Biomedical Applications”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 18 , No. 3, pp. 1059 – 1072, May-June 2012. CrossrefWeb of ScienceGoogle Scholar

  • [16] A. Di Donato et al., “Using Correlation Maps in a Wide-band Microwave GPR”, Progress In Electromagnetics Research B, Vol. 30, pp. 371-387, 2011. Google Scholar

  • [17] M. Farina et al. “Disentangling time in a near-field approach to scanning probe microscopy”, Nanoscale, vol. 3(9), pp.3589-93, Sep 2011. Google Scholar

  • [18] M. Farina, et al., “Algorithm for reduction of noise in ultramicroscopy and application to near-field microwave microscopy," IET Elect. Lett., Vol. 46, No. 1, 50-52, Jan. 2010. Google Scholar

  • [19] A. Di Donato, A. Morini, and M. Farina, “Optical Fiber Extrinsic Micro-Cavity Scanning Microscopy”, Progress In Electromagnetics Research, Vol. 133, pp. 347-366, 2013. Web of ScienceGoogle Scholar

  • [20] S. O. Isikman et al., “Lensfree On-Chip Microscopy and Tomography for Bio-Medical Applications”, IEEE Journal of Selected Topics in Quantum Electronics (2011). Web of ScienceGoogle Scholar

  • [21] A. Di Donato, T. Pietrangelo, T. Da Ros, T. Monti, D. Mencarelli, G. Venanzoni, A. Morini and M. Farina, “Infrared imaging of fixed-cells through micro-cavity fiber optic scanning microscopy”, Proc. SPIE 8797, 87970I (2013). Google Scholar

About the article

Received: 2013-05-09

Accepted: 2013-09-11

Published Online: 2014-02-27

Citation Information: Optical Data Processing and Storage, Volume 1, Issue 1, ISSN (Online) 2084-8862, DOI: https://doi.org/10.2478/odps-2014-0003.

Export Citation

©2014 Andrea Di Donato et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in