Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Polymer stabilized Monodispersed Liquid Crystal Droplets: Microfluidics Generation and Optical Analysis

D. E. Lucchetta
  • Dipartimento SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Simoni
  • Dipartimento SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Pagliusi
  • Dipartimento di Fisica, Università della Calabria, Via P.Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Cipparrone
  • Dipartimento di Fisica, Università della Calabria, Via P.Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-25 | DOI: https://doi.org/10.1515/odps-2015-0001


Liquid crystal droplets are widely used in optics and photonics applications. They can act as simple resonators or be arranged in interconnected periodic configurations when their external dimension are similar. In this work we optically analyze and describe the microfluidic generation of liquid crystal droplets in a thermally stabilized environment, namely water, which enables a narrow droplets diameter distribution.We demonstrate a fine control of the droplet dimensions in both nematic and isotropic phases by controlling the ratio between liquid crystal andwater flows. Droplets generated in the isotropic phase show a complex internal structure which reflects their high degree of internal disorder. Moreover, the internal configuration of the droplets also depends on the purity degree of the water in which they grow. In order to investigate their size distribution and their internal structure, a small amount of photo-polymerizable agent (NOA61 optical glue)was added to the liquid crystal to stabilize the droplets structure and to avoid their coalescence. Acting this way, polymer stabilized liquid crystal droplets were created after light induced polymerization, which are stable even after water evaporation. The polarized microscope analysis shows that the bipolar or radial order of the liquid crystal is still preserved inside the droplets depending on the water purity. Moreover an improved size uniformity is reported.

Keywords : Polymers; Liquid Crystals; Microfluidics; Microdroplets


  • [1] Liquid crystal-based emulsions: Progress and prospects, Alam, Mohammad, Mydul; Aramaki, Kenji; Journal of Oleo Science, v 63, n 2, p 97-108, 2014 Web of ScienceGoogle Scholar

  • [2] Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses, Sivakumar, Sri; Wark, Kim L.; Gupta, Jugal K.; Abbott, Nicholas L.; Caruso, Frank; Advanced FunctionalMaterials, v 19, n 14, p 2260-2265, July 24, 2009 Google Scholar

  • [3] Liquid crystal emulsions, Loudet, Jean-Christophe; Poulin, Philippe; Journal of Dispersion Science and Technology, v 23, n 1-3, p 143-154, 2002, Emulsion Science and Technology - A tribute to Paul Becher Google Scholar

  • [4] Microemulsions and liquid crystals, Flaim, Tony; Friberg, Stig E.; Advances in Liquid Crystals, v 5, p 137-155, 1982 Google Scholar

  • [5] Mosca, Monica; Murgia, Sergio; Ceglie, Andrea; Monduzzi, Maura; Ambrosone, Luigi, Journal of Physical Chemistry B, v 110, n 51, p 25994-26000, December 28, 2006 Google Scholar

  • [6] Schambil, F. (Henkel KGaA, Duesseldorf, West Ger, Henkel KGaA, Duesseldorf, West Ger); Jost, F.; Schwuger, M.J.; Progress in Colloid & Polymer Science, v 73, p 37-47, 1987 Google Scholar

  • [7] Band-edge and random lasing in paintable liquid crystal emulsions, Hands, P.J.W.; Gardiner, D.J.; Morris, S.M.; Mowatt, C.; Wilkinson, T.D.; Coles, H.J.; Applied Physics Letters, v 98, n 14, April 4, 2011 Web of ScienceCrossrefGoogle Scholar

  • [8] Coherent random laser fluid of nematic liquid crystal emulsions, Nagai, Yusuke; Fujimura, Ryushi; Kajikawa, Kotaro; Japanese Journal of Applied Physics, v 53, n 1 PART 2, 2014, Recent Advances in Molecular Electronics and Bio-electronics Google Scholar

  • [9] General Liquid-crystal droplets produced by microfluidics for urea detection, Khan, Mashooq1; Park, Soo-Young1; Sensors and Actuators, B: Chemical, v 202, p 516-522, October 31, 2014 Web of ScienceGoogle Scholar

  • [10] Gain narrowing and random lasing from dye-doped polymerdispersed liquid crystals with nanoscale liquid crystal droplets, Liu, Y.J; Sun, X.W; Elim, H.I.2; Ji, W.; Applied Physics Letters, v 89, n 1, 2006 Google Scholar

  • [11] Tuneable multicoloured patterns from photonic crosscommunication between cholesteric liquid crystal droplets, Noh, Junghyun; Liang, Hsin-Ling; Drevensek-Olenik, Irena; Lagerwall, Jan P. F.; Journal of Materials Chemistry C, v 2, n 5, p 806-810, February 7, 2014 CrossrefWeb of ScienceGoogle Scholar

  • [12] P.G. De Gennes; The Physics of Liquid Crystals (International Series of Monographs on Physics) Paperback – August 10, 1995, Oxford University Press; 2 edition (August 10, 1995) Google Scholar

  • [13] P.S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore, 1995 Google Scholar

  • [14] Provenzano, C., Mazzulla, A., Pagliusi, P., De Santo, M.P., Desiderio, G., Perrotta, I., Cipparrone, G.; Self-organized internal architectures of chiral micro-particles (2014), APLMaterials, 2 (2), art. no. 022103 Google Scholar

  • [15] Mazzulla, A., Cipparrone, G., Hernandez, R.J., Pane, A., Bartolino, R. Self-organized chiral microspheres (2013), Molecular Crystals and Liquid Crystals, 576 (1), pp. 15-22. Web of ScienceGoogle Scholar

  • [16] Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets, Fernandez-Nieves, A.; Link, D.R.; Weitz, D.A.; Applied Physics Letters, v 88, n 12,March 20, 2006; Article number: 121911. Google Scholar

  • [17] Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream, P. B.Umbanhowar, V. Prasad, and D. A. Weitz; Langmuir 2000, 16, 347-351. CrossrefGoogle Scholar

  • [18] Optically Anisotropic Colloids of Controllable Shape, A. Fernández-Nieves, G. Cristobal, V. Garcés-Chávez,G.C. Spalding, K. Dholakia and D.A. Weitz, Advanced Materials, Volume 17, Issue 6, Pages 647–778. Google Scholar

  • [19] Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping,ThomasWard,Magalie Faivre, Manouk Abkarian, Howard A. Stone; Electrophoresis 2005, 26, 3716–3724. Google Scholar

  • [20] Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material, R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, C. Umeton; Opt. Lett. 29, 1261-1263 (2004). CrossrefPubMedGoogle Scholar

About the article

Received: 2014-11-17

Accepted: 2015-03-02

Published Online: 2015-05-25

Citation Information: Optical Data Processing and Storage, Volume 1, Issue 1, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2015-0001.

Export Citation

©2015 D. E. Lucchetta et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

D. E. Lucchetta, F. Simoni, R. J. Hernandez, A. Mazzulla, and G. Cipparrone
Molecular Crystals and Liquid Crystals, 2017, Volume 649, Number 1, Page 11

Comments (0)

Please log in or register to comment.
Log in