Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-8862
See all formats and pricing
More options …

GPC: Recent developments

Andrew Bañas
  • DTU Fotonik, Dept. Photonics Engineering, Ørsted Plads 343, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oleksii Kopylov
  • DTU Fotonik, Dept. Photonics Engineering, Ørsted Plads 343, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark Villangca
  • DTU Fotonik, Dept. Photonics Engineering, Ørsted Plads 343, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Darwin Palima
  • DTU Fotonik, Dept. Photonics Engineering, Ørsted Plads 343, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jesper Glückstad
  • DTU Fotonik, Dept. Photonics Engineering, Ørsted Plads 343, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-11 | DOI: https://doi.org/10.1515/odps-2015-0002

Abstract

Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions. It has been used in applications such as optical manipulation, microscopy, optical cryptography and more contemporary biological applications such as twophoton optogenetics or neurophotonics.Among its diverse applications, simple efficient shapes for illumination or excitation happen to have the biggest potential use beyond the research experiments. Hence, we preset recent GPC developments geared towards these applications.We start by presenting the theory needed for designing an optimized GPC light shaper (GPC LS). A compact GPC LS implementation based on this design is then used to demonstrate the GPC LS’s benefits on typical applications where lasers have to be shaped into a particular pattern. Both simulations and experiments show ~80% efficiency, ~3x intensity gain and ~90% energy savings. As an application example,we show how computer generated hologram reconstruction can be up to three times brighter or how the number of optical spots can be multiplied threefold while maintaining the brightness. Finally, to demonstrate its potential for biomedical multispectral applications, we demonstrate efficient light shaping of a supercontinuum laser over the visible wavelength range.

References

  • [1] D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, "Wave-guided optical waveguides," Opt. Express 20, 2004–14 (2012). CrossrefPubMedGoogle Scholar

  • [2] E. Papagiakoumou, F. Anselmi, A. Bcgue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, "Scanless two-photon excitation of channelrhodopsin-2," Nat. Methods 7, 848–854 (2010). PubMedWeb of ScienceCrossrefGoogle Scholar

  • [3] J. G. Lee, B. J. McIlvain, C. J. Lobb, andW. T. Hill, "Analogs of basic electronic circuit elements in a free-space atom chip.," Sci. Rep. 3, 1034 (2013). Web of ScienceGoogle Scholar

  • [4] E. Papagiakoumou, "Optical developments for optogenetics.," Biol. Cell 105, 443–64 (2013). PubMedGoogle Scholar

  • [5] D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, "Generalized phase contrast matched to Gaussian illumination," Opt. Express 15, 11971–7 (2007). PubMedWeb of ScienceCrossrefGoogle Scholar

  • [6] A. Banas, D. Palima, M. Villangca, T. Aabo, and J. Glückstad, "GPC light shaper for speckle-free one- and two- photon contiguous pattern excitation," Opt. Express 7102, 5299–5310 (2014). Google Scholar

  • [7] T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, "Structured Microlens Arrays for Beam Shaping," in Proc. of SPIE (2003), Vol. 5175, pp. 109–120. Google Scholar

  • [8] C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate," J. Opt. A Pure Appl. Opt. 1, 398–403 (1999). CrossrefGoogle Scholar

  • [9] J. A. Hoffnagle and C. M. Jefferson, "Design and performance of a refractive optical system that converts a Gaussian to a flattop beam.," Appl. Opt. 39, 5488–99 (2000). CrossrefPubMedGoogle Scholar

  • [10] S. K. Case, P. R. Haugen, and O. J. Lrkberg, "Multifacet holographic optical elements forwave front transformations.," Appl. Opt. 20, 2670–5 (1981). CrossrefPubMedGoogle Scholar

  • [11] I. Gur and D. Mendlovic, "Diffraction limited domain flat-top generator," 237–248 (1998). Google Scholar

  • [12] W. B. Veldkamp, "Laser beam profile shaping with interlaced binary diffraction gratings.," Appl. Opt. 21, 3209–12 (1982). PubMedCrossrefGoogle Scholar

  • [13] M. R. Wang, "Analysis and optimization on single-zone binary flat-top beam shaper," Opt. Eng. 42, 3106 (2003). CrossrefGoogle Scholar

  • [14] R. Voelkel and K. J. Weible, "Laser beam homogenizing: limitations and constraints," in Proc. of SPIE, A. Duparré and R. Geyl, eds. (2008), Vol. 7102, p. 71020J–71020J–12. Google Scholar

  • [15] A. Banas, O. Kopylov, M. Villangca, D. Palima, and J. Glückstad, "GPC light shaper: static and dynamic experimental demonstrations," Opt. Express (2014). PubMedWeb of ScienceGoogle Scholar

  • [16] J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry.," Appl. Opt. 40, 268–82 (2001). CrossrefPubMedGoogle Scholar

  • [17] S. Tauro, A. Banas, D. Palima, and J. Glückstad, "Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper," Opt. Express 19, 7106–11 (2011). PubMedCrossrefGoogle Scholar

  • [18] D. Palima and J. Glückstad, "Multi-wavelength spatial light shaping using generalized phase contrast," Opt. Express 16, 1331–42 (2008). PubMedWeb of ScienceCrossrefGoogle Scholar

  • [19] O. Kopylov, A. Banas, M. Villangca, and D. Palima, "GPC light shaping a supercontinuum source," 23, 1894–1905 (2015). PubMedGoogle Scholar

  • [20] A. W. Lohmann and D. P. Paris, "Binary fraunhofer holograms, generated by computer.," Appl. Opt. 6, 1739–48 (1967). PubMedCrossrefGoogle Scholar

  • [21] W. H. Lee, "Sampled fourier transform hologram generated by computer," Appl. Opt. 9, 639–43 (1970). CrossrefPubMedGoogle Scholar

  • [22] J. Glückstad and D. Z. Palima, Generalized Phase Contrast: Applications in Optics and Photonics (Springer Series in Optical Sciences, 2009). Google Scholar

  • [23] D. G. Grier, "A revolution in optical manipulation," Nature 424, 810–6 (2003). PubMedCrossrefGoogle Scholar

  • [24] M. A. Go, C. Stricker, S. Redman, H.-A. Bachor, and V. R. Daria, "Simultaneous multi-site two-photon photostimulation in three dimensions.," J. Biophotonics 5, 745–53 (2012). CrossrefWeb of ScienceGoogle Scholar

  • [25] L. Ge, M. Duelli, and R. Cohn, "Enumeration of illumination and scanning modes from real-time spatial light modulators.," Opt. Express 7, 403–16 (2000). CrossrefPubMedGoogle Scholar

  • [26] T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Banas, and J. Glückstad, "Functionalized 2PP structures for the BioPhotonics Workstation," in Proceedings of SPIE, D. L. Andrews, E. J. Galvez, and J. Glückstad, eds. (2011), Vol. 7950, p. 79500Q. Google Scholar

  • [27] P. J. Rodrigo, L. Gammelgaard, P. Brggild, I. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps.," Opt. Express 13, 6899–904 (2005). PubMedCrossrefGoogle Scholar

  • [28] Y. Tanaka, S. Tsutsui, M. Ishikawa, and H. Kitajima, "Hybrid optical tweezers for dynamic micro-bead arrays.," Opt. Express 19, 15445–51 (2011). PubMedCrossrefGoogle Scholar

  • [29] S. Tauro, A. Banas, D. Palima, and J. Glückstad, "Dynamic axial stabilization of counter-propagating beam-traps with feedback control," Opt. Express 18, 18217–22 (2010). CrossrefWeb of SciencePubMedGoogle Scholar

  • [30] P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Real-time threedimensional optical micromanipulation of multiple particles and living cells.," Opt. Lett. 29, 2270–2 (2004). CrossrefGoogle Scholar

  • [31] J. Glückstad, L. Lading, H. Toyoda, and T. Hara, "Lossless light projection.," Opt. Lett. 22, 1373–5 (1997). PubMedCrossrefGoogle Scholar

  • [32] V. Nourrit, J.-L. de Bougrenet de la Tocnaye, and P. Chanclou, "Propagation and diffraction of truncated Gaussian beams," J. Opt. Soc. Am. A 18, 546 (2001). CrossrefGoogle Scholar

  • [33] R.W. Gerchberg andW. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik (Stuttg). 35, 237–246 (1972). Google Scholar

  • [34] A. Banas, D. Palima, and J. Glückstad, "Matched-filtering generalized phase contrast using LCoS pico-projectors for beamforming.," Opt. Express 20, 9705–12 (2012). Web of ScienceCrossrefGoogle Scholar

  • [35] J. Glückstad and P. C. Mogensen, "Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method," 169–175 (2000). Google Scholar

  • [36] F. Kenny, F. S. Choi, J. Glückstad, and M. J. Booth, "Adaptive optimisation of a generalised phase contrast beam shaping system," Opt. Commun. 342, 109–114 (2015). Web of ScienceCrossrefGoogle Scholar

  • [37] R. Porras-Aguilar, K. Falaggis, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, "Self-calibrating common-path interferometry," Opt. Express 23, 3327 (2015). Web of ScienceCrossrefGoogle Scholar

  • [38] V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, "Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform.," Opt. Lett. 27, 945–7 (2002). CrossrefGoogle Scholar

  • [39] D. Palima and J. Glückstad, "Gaussian to uniform intensity shaper based on generalized phase contrast," Opt. Express 16, 1507–16 (2008). Web of ScienceCrossrefPubMedGoogle Scholar

  • [40] M. Villangca, A. Banas, O. Kopylov, D. Palima, and J. Glückstad, "Optimal illumination of phase-only diffractive element using GPC light shaper," in Proc. of SPIE (2015), pp. 9379–24. Google Scholar

  • [41] E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, a J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60–71 (2002). CrossrefGoogle Scholar

  • [42] Y. Y. Cheng and J. C.Wyant,"Multiple-wavelength phase-shifting interferometry," Appl. Opt. 24, 804 (1985). CrossrefPubMedGoogle Scholar

  • [43] E. L. Heffer and S. Fantini, "Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor," Appl. Opt. 41, 3827–3839 (2002). PubMedCrossrefGoogle Scholar

  • [44] Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, "Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm," Appl. Phys. Lett. 81, 975 (2002). CrossrefGoogle Scholar

About the article

Received: 2015-03-11

Accepted: 2015-03-25

Published Online: 2015-06-11


Citation Information: Optical Data Processing and Storage, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2015-0002.

Export Citation

©2015 Andrew Bañas et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in