Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

1 Issue per year

Open Access
See all formats and pricing
More options …

Advances in Fibre Microendoscopy for Neuronal Imaging

Simon Peter Mekhail
  • Corresponding author
  • Light-Matter Interactions Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gordon Arbuthnott
  • Corresponding author
  • Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Síle Nic Chormaic
  • Corresponding author
  • Light-Matter Interactions Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-22 | DOI: https://doi.org/10.1515/odps-2016-0003


Traditionally, models for neural dynamics in the brain have been formed through research conducted on slices, with electrodes, or by lesions to functional areas. Recent developments in functional dyes and optogenetics has made brain research more accessible through the use of light. However, this improved accessibility does not necessarily apply to deep regions of the brain which are surrounded by scattering tissue. In this article we give an overview of some of the latest methods in development for neural measurement and imaging.We specifically address methods designed to overcome the problem of imaging invivo for regions far beyond the mean free path of photons in brain tissue. These methodswould permit previously restricted neural research.

Keywords: in-vivo; scattering media; image reconstruction; phase correction


  • [1] J. Parkinson. An Essay on the Shaking Palsy. Sherwood, Neely and Jones, 1817. Google Scholar

  • [2] D. Ferrier. The Functions of the Brain. Smith, Elder and Co., 1876. Google Scholar

  • [3] A. F. Mettler. Effects of bilateral simultaneous subcortical lesions in the primate. Journal of Neuropathology and Experimental Neurology, 4(2):99–122, 1945. Google Scholar

  • [4] A. F. Mettler and C. C. Mettler. Effects of striatal injury. Brain, 65(3):242–255, 1942. CrossrefGoogle Scholar

  • [5] A. V. Kravitz and A. C. Kreitzer. Striatal mechanisms underlying movement. Physiology, 27:167–177, 2012. CrossrefGoogle Scholar

  • [6] C. R. Gerfen and D. J. Surmeier. Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34:441–466, 2011. CrossrefGoogle Scholar

  • [7] G. Ji, M. E. Feldman, K. Deng, K. S. Greene, J. Wilson, J. C. Lee, R. C. Johnston, M. Rishniw, Y. Tallini, J. Zhang, W. G. Wier, M. P. Blaustein, H. Xin, J. Nakai, and M. I. Kotlikoff. Ca2+-sensing transgenic mice postsynaptic signalling in smooth muscle. Journal of Biochemistry, 279:21461–21468, 2004. Google Scholar

  • [8] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8:1263–1268, 2005. CrossrefGoogle Scholar

  • [9] F. Helmchen andW. Denk. Deep tissue two-photon microscopy. Nature Methods, 2(12):932–940, 2005. Google Scholar

  • [10] I. A. Favre-Bulle, D. Preece, T. A. Nieminen, L. A. Heap, E. K. Scott, and H. Rubinsztein-Dunlop. Scattering of sculpted light in intact brain tissue, with implications for optogenetics. Scienti fic reports, 5, 2015. Google Scholar

  • [11] V. Ntziachristos. Going deeper than microscopy: The optical imaging frontier in biology. Nature Methods, 7(8):603–614, 2010. CrossrefGoogle Scholar

  • [12] S. Schott, J. Bertolotti, J. F. Léger, L. Bourdieu, and S. Gigan. Characterization of the angular memory effect of scattered light in biological tissues. Optics Express, 23:13505–13516, 2015. CrossrefGoogle Scholar

  • [13] S. L. Jacques. Optical properties of biological tissues: A review. Physics In Medicine and Biology, 58(11):R37–R61, 2013. CrossrefGoogle Scholar

  • [14] R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, and S. Rotter. Invariance property of wave scattering through disordered media. Proceedings of the National Academy of Sciences, 111(50):17765–17770, 2014. Google Scholar

  • [15] J. C. Jung, A. D. Mehta, E. Askay, R. Stepnoski, and M. J. Schnitzer. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. Journal of Neurophysiology, 92:3121–3133, 2004. CrossrefGoogle Scholar

  • [16] W. Wallace, L. H. Schaefer, and J. R. Swedlow. A workingperson’s guide to deconvolution in light microscopy. BioTechniques, 31:1076–1097, 2001. Google Scholar

  • [17] X. Deng and M. Gu. Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte carlo simulation. Applied Optics, 42(16):3321–3329, Jun 2003. CrossrefGoogle Scholar

  • [18] J. Larsch, D. Ventimiglia, C. I. Bargmann, and D. R. Albrecht. High-throughput imaging of neuronal activity in caenorhabditis elegans. Proceedings of the National Academy of Sciences, 110(45):E4266–E4273, 2013. Google Scholar

  • [19] B. C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer III, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208):1257998, 2014. Google Scholar

  • [20] R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. F. Van Noorden, and E. M. M. Manders. Controlled lightexposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature Biotechnology, 25:249–253, 2007. CrossrefGoogle Scholar

  • [21] V. Magidson and A. Khodjakov. Circumventing photodamage in live-cell microscopy. Methods in cell biology, 114, 2013. Google Scholar

  • [22] M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, Richard S. R. S. Mann, Randy M. R. M. Bruno, and E. M. C. Hillman. Swept confocally-aligned planar excitation (scape) microscopy for high-speed volumetric imaging of behaving organisms. Nature Photonics, 9(2):113–119, 2015. CrossrefGoogle Scholar

  • [23] V. Voleti, M. B. Bouchard, C. Lacefield, R. M. Bruno, and E. M. Hillman. Fast, volumetric imaging of in vivo brains with swept confocally aligned planar excitation (scape) microscopy. In Optics in the Life Sciences, page BrM2B.3. Optical Society of America, 2015. Google Scholar

  • [24] E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver. Impact of wavefront distortion and scattering on 2- photon microscopy inmammalian brain tissue. Optics Express, 19(23):22755–22774, 2011. CrossrefGoogle Scholar

  • [25] P. Theer, M. T. Hasan, and W. Denk. Two-photon imaging to a depth of 1000 μm in living brains by use of a ti:al2o3 regenerative amplifier. Optics Letters, 28(12):1022–1024, 2003. CrossrefGoogle Scholar

  • [26] D. Kobat, N. G. Horton, and C. Xu. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. Journal of Biomedical Optics, 16(10):106014, 2011. CrossrefGoogle Scholar

  • [27] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 7(3):205–209, 2013. CrossrefGoogle Scholar

  • [28] C. J. Roome and B. Kuhn. Chronic cranial window with access port for repeated cellularmanipulations, drug application, and electrophysiology. Frontiers in Cellular Neuroscience, 8:379, 2014. Google Scholar

  • [29] J. L. Chen, M. L. Andermann, T. Keck, N. L. Xu, and Y. Ziv. Imaging neuronal populations in behaving rodents: Paradigms for studying neural circuits underlying behavior in the mammalian cortex. The Journal of Neuroscience, 33(45):17631– 17640, 2013. CrossrefGoogle Scholar

  • [30] D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron, 56(1):4–57, 2007. Google Scholar

  • [31] P. Moshayedi, G. Ng, J. C.F. Kwok, G. S.H. Yeo, C. E. Bryant, J.W. Fawcett, K. Franze, and J. Guck. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials, 35(13):3919–3925, 2014. CrossrefGoogle Scholar

  • [32] S. Ghanavati, L. X. Yu, J. P. Lerch, and J. G. Sled. A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT. Journal of Neuroscience Methods, 221:70–77, 2014. CrossrefGoogle Scholar

  • [33] L. Yu, K. Ronayne, T. Johnson, T. Fuzesi, J. Dunn, J. Bains, and K. Murari. Single fiber optical systems for monitoring brain dynamics in deep structures. In Optics in the Life Sciences, page JT3A.49. Optical Society of America, 2015. Google Scholar

  • [34] G. Cui, S. B. Jun, X. Jin, M. D. Pham, S. S. Vogel, D. M. Lovinger, and R. M. Costa. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436):238–242, 2013. Google Scholar

  • [35] A. V. Kravitz and A. C. Kreitzer. Optogenetic manipulation of neural circuitry in vivo. Current Opinion in Neurpbiology, 21(3):433–439, 2011. Google Scholar

  • [36] E. S. Calipari, R. C. Bagot, I. Purushothaman, T. J. Davidson, J. T. Yorgason, C. J. Peña, D. M. Walker, S. T. Pirpinias, K. G. Guise, C. Ramakrishnan, K. Deisseroth, and E. J. Nestler. In vivo imaging identifies temporal signature of d1 and d2 medium spiny neurons in cocaine reward. Proceedings of the National Academy of Sciences, 113(10):2726–2731, 2016. Google Scholar

  • [37] L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, Anikeeva P., R. C. Malenka, and K. Deisseroth. Natural neural projection dynamics underlying social behavior. Cell, 157(7):1535–1551, 2014. CrossrefGoogle Scholar

  • [38] G. Cui, S. B. Jun, X. Jin, G. Luo, M. D. Pham, D. M. Lovinger, S. S. Vogel, and R. M. Costa. Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nature Protocols, 9(6):1213–1228, 2014. CrossrefGoogle Scholar

  • [39] D. Karadaglic, R. Juškaitis, and T. Wilson. Confocal endoscopy via structured illumination. Scanning, 24:301–304, 2002. Google Scholar

  • [40] J. C. Jung and M. J. Schnitzer. Multiphoton endoscopy. Optics Letters, 28(11):902–904, Jun 2003. CrossrefGoogle Scholar

  • [41] K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz. Clinical two-photon microendoscopy. Microscopy Research and Technique, 70:398–402, 2007. Google Scholar

  • [42] B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer. Advances in light microscopy for neuroscience. Annual review of neuroscience, 32:435, 2009. CrossrefGoogle Scholar

  • [43] F. Wang, H. S. S. Lai, L. Liu, P. Li, H. Yu, Z. Liu, Y. Wang, and W. J. Li. Super-resolution endoscopy for real-time wide-field imaging. Optics Express, 23(13):16803–16811, 2015. CrossrefGoogle Scholar

  • [44] J. N. Betley, S. Xu, Z. F. Huang Cao, R. Gong, C. J.Magnus, Y. Yu, and S. M. Sternson. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature, 521:180–185, 2015. Google Scholar

  • [45] D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney. Three-dimensional miniature endoscopy. Nature, 443(7113):765, 2006. Google Scholar

  • [46] A. Abramov, L. Minai, and D. Yelin. Multiple-channel spectrally encoded imaging. Optics Express, 18(14):14745–14751, 2010. CrossrefGoogle Scholar

  • [47] H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu. Fast handheld two-photon fluorescence microendoscope with a 475 μm × 475 μm field of view for in vivo imaging. Optics Letters, 33(12):1333–1335, 2008. CrossrefGoogle Scholar

  • [48] R. S. Pillai, D. Lorenser, and D. D. Sampson. Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles. Optics Express, 19(8):7213–7221, 2011. CrossrefGoogle Scholar

  • [49] S. J. Miller, C. M. Lee, B. P. Joshi, A. Gaustad, E. J. Seibel, and T. D. Wang. Targeted detection of murine colonic dysplasia in vivowith flexiblemultispectral scanning fiber endoscopy. Journal of Biomedical Optics, 17(2):021103, 2012. CrossrefGoogle Scholar

  • [50] S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan. Scanningfree imaging through a single fiber by random spatio-spectral encoding. Optics Letters, 40(4):534–537, 2015. CrossrefGoogle Scholar

  • [51] E. K. Bomati, G. Manning, and D. D. Deheyn. Amphioxus encodes the largest known family of green fluorescent proteins, which have diversified into distinct functional classes. Evolutionary Biology, 9(77), 2009. Google Scholar

  • [52] K. Goda, K. K. Tsia, and B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(30):1145–1149, 2009. CrossrefGoogle Scholar

  • [53] D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney. Double-clad fiber for endoscopy. Optics Letters, 29(20):2408–2410, 2004. CrossrefGoogle Scholar

  • [54] M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu. Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy. Light Science & Applications, 3:e126, 2014. CrossrefGoogle Scholar

  • [55] N. P. Ghimire, H. Bao, and M. Gu. Broadband excitation and collection in fiber-optic nonlinear endomicroscopy. Applied Physics Letters, 103(073703), 2013. Google Scholar

  • [56] B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson. Miniaturized fibercoupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts. Optics Letters, 40(11):2553–2556, 2015. CrossrefGoogle Scholar

  • [57] V. Szabo, V. Ventalon, C.and De Sars, J. Bradley, and V. Emiliani. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Optics Letters, 84(6):1157–1169, 2014. Google Scholar

  • [58] D. Karadaglic and T. Wilson. Image formation in structured illumination wide-field fluorescence microscopy. Micron, 39(7):808–818, 2008. CrossrefGoogle Scholar

  • [59] L. Schermelleh, R. Heintzmann, and H. Leonhardt. A guide to super-resolution fluorescence microscopy. Journal of Cell Biology, 190(2):165–175, 2010. CrossrefGoogle Scholar

  • [60] T. N. Ford, D. Lim, and J. Mertz. Fast optically sectioned fluorescence hilo endomicroscopy. Journal of Biomedical Optics, 17(2):021105, 2012. CrossrefGoogle Scholar

  • [61] N. Bozinovic, C. Ventalon, T. Ford, and J. Metz. Fluorescence endomicroscopy with structured illumination. Optics Express, 16(11):8016–8025, 2008. CrossrefGoogle Scholar

  • [62] C. J. Engelbrecht, F. Voigt, and F. Helmchen. Miniaturized selective plane illumination microscopy for high-contrast in vivo fluorescence imaging. Optics Letters, 35(9):1413–1415, 2010. CrossrefGoogle Scholar

  • [63] O. Coquoz, R. Conde, F. Taleblou, and C. Depeursinge. Performances of endoscopic holography with a multicore optical fiber. Applied Optics, 34(31):7186–7193, Nov 1995. CrossrefGoogle Scholar

  • [64] A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz. Widefield lensless imaging through a fiber bundle via speckle correlations. Optics Express, 24(15):16835–16855, 2016. CrossrefGoogle Scholar

  • [65] O. Katz, P. Heidmann, M. Fink, and S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature photonics, 8(10):784– 790, 2014. CrossrefGoogle Scholar

  • [66] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J.n Lee, andW. Choi. Scanner-free andwide-field endoscopic imaging by using a single multimode optical fiber. Physical Review Letters, 109(20):203901, 2012. CrossrefGoogle Scholar

  • [67] D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser. Digital confocal microscopy through a multimode fiber. Optics Express, 23(18):23845–23858, Sep 2015. CrossrefGoogle Scholar

  • [68] D. Gloge. Weakly guiding fibers. Applied Optics, 10(10):2252– 2258, 1971. CrossrefGoogle Scholar

  • [69] I. M. Vellekoop, A. Lagendijk, and A. P. Mosk. Exploiting disorder for perfect focusing. Nature Photonics, 4(5):320–322, 2010. Google Scholar

  • [70] T. Cižmár, M.Mazilu, and K. Dholakia. In situ wavefront correction and its application to micromanipulation. Nature Photonics, 4(6):388–394, 2010. CrossrefGoogle Scholar

  • [71] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Physical ReviewLetters, 104(100601), 2010. Google Scholar

  • [72] Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Physical Review Letters, 107:023902, 2011. CrossrefGoogle Scholar

  • [73] A.W. Snyder and J. Love. Optical Waveguide Theory. Science paperbacks. Springer, 1983. Google Scholar

  • [74] B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao. Lowspatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proceedings of the National Acadamy of Sciences, 12(5):1304– 1309, 2015. Google Scholar

  • [75] R. N. Mahalati, R. Yu Gu, and J. M. Kahn. Resolution limits for imaging throughmulti-mode fiber. Optics Express, 21(2):1656– 1668, 2013. CrossrefGoogle Scholar

  • [76] T. Cižmár and K. Dholakia. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Optics Express, 19(20):18871–18884, 2011. CrossrefGoogle Scholar

  • [77] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis. High-resolution, lensless endoscope based on digital scanning through a multimode fiber. Biomedical Optics Express, 4(2):260–270, 2013. CrossrefGoogle Scholar

  • [78] Bianchi S. and Di Leonardo R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab on a Chip, 12(3):635–639, 2012. Google Scholar

  • [79] R. N. Mahalati, D. Askarov, J. P. Wilde, and J. M. Kahn. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Optics Express, 20(13):14321–14337, 2012. CrossrefGoogle Scholar

  • [80] D. Loterie, S. A. Goorden, D. Psaltis, and C. Moser. Confocal microscopy through a multimode fiber using optical correlation. Optics Letters, 40(24):5754–5757, Dec 2015. CrossrefGoogle Scholar

  • [81] S. Bianchi, V. P. Rajamanickam, L. Ferrara, E. Di Fabrizio, C. Liberale, and R. Di Leonardo. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Optics Letters, 38(23):4935–4938, 2013. CrossrefGoogle Scholar

  • [82] T. Cižmár and K. Dholakia. Exploiting multimode waveguides for pure fibre-based imaging. Nature Communications, 1027(3), 2012. CrossrefGoogle Scholar

  • [83] M. Plöschner, B. Straka, K. Dholakia, and T. Cižmár. GPU accelerated toolbox for real-time beam-shaping in multimode fi- bres. Optics Express, 22(3):2933–2947, 2014. CrossrefGoogle Scholar

  • [84] H. Jang, C. Yoon, E. Chung, W. Choi, and H. Lee. Speckle suppression via sparse representation for wide-field imaging through turbid media. Optics Express, 22(13):16619–16628, Jun 2014. CrossrefGoogle Scholar

  • [85] R. Y. Gu, R. N. Mahalati, and J. M. Kahn. Noise-reduction algorithms for optimization-based imaging through multi-mode fiber. Optics Express, 22(12):15118–15132, Jun 2014. CrossrefGoogle Scholar

  • [86] H. Jang, C. Yoon, E. Chung, W. Choi, and H. Lee. Holistic random encoding for imaging through multimode fibers. Optics Express, 23(5):6705–6721, 2015. CrossrefGoogle Scholar

  • [87] D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun. Highspeed scattering medium characterization with application to focusing light through turbid media. Opt. Express, 20(2):1733– 1740, 2012. CrossrefGoogle Scholar

  • [88] A. Drémeau, A. Liutkus, D.Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet. Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques. Optics Express, 23(9):11898–11911, 2015. CrossrefGoogle Scholar

  • [89] D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi. Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle. Optics Letters, 39(7):1921–1924, 2014. CrossrefGoogle Scholar

  • [90] M. Plöschner, V. Kollárová, Z. Dostál, J. Nylk, T. Barton-Owen, D. E. K. Ferrier, R. Chmelík, K. Dholakia, and T. Cižmár. Multimode fibre: Light-sheet microscopy at the tip of a needle. Scienti fic reports, 5, 2015. Google Scholar

  • [91] D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Scientific Reports, 5(10347), 2015. Google Scholar

  • [92] R. A. Panicker, J. M. Kahn, and S. P. Boyd. Compensation of multimode fiber dispersion using adaptive optics via convex optimization. Journal of Lightwave Technology, 26(10):1295– 1303, 2008. CrossrefGoogle Scholar

  • [93] E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser. Delivery of focused short pulses through a multimode fiber. Optics Express, 23(7):9109–9120, 2015. CrossrefGoogle Scholar

  • [94] J. Carpenter, B. J. Eggleton, and J. Schröder. Observation of eisenbud-wigner-smith states as principal modes in multimode fibre. Nature Photonics, 9(11):751–757, 2015. CrossrefGoogle Scholar

  • [95] J. A. Carpenter, B. J. Eggleton, and J. Schroeder. Maximally ef- ficient imaging through multimode fiber. In CLEO: 2014, page STh1H.3. Optical Society of America, 2014. Google Scholar

  • [96] D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis. Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation. Journal of Biomedical Optics, 21(4):045002–045002, 2016. CrossrefGoogle Scholar

  • [97] M. Plöschner, T. Tyc, and T. Cižmár. Seeing through chaos in multimode fibers. Nature Photonics, 9(8):529–535, 2015. CrossrefGoogle Scholar

  • [98] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun. Real-time resilient focusing through a bending multimode fiber. Optics Express, 21(10):12881–12887, 2013. CrossrefGoogle Scholar

  • [99] R. Y. Gu, R. N.Mahalati, and J. M. Kahn. Design of flexible multimode fiber endoscope. Optics express, 23(21):26905–26918, 2015. CrossrefGoogle Scholar

  • [100] S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser. Dynamic bending compensation while focusing through a multimode fiber. Optics Express, 21(19):22504– 22514, 2013. CrossrefGoogle Scholar

  • [101] N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis. Light control in a multicore fiber using the memory effect. Optics Express, 23(23):30532–30544, Nov 2015. CrossrefGoogle Scholar

About the article

Received: 2016-07-14

Accepted: 2016-10-31

Published Online: 2016-11-22

Citation Information: Optical Data Processing and Storage, Volume 2, Issue 1, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2016-0003.

Export Citation

© 2016 Simon Peter Mekhail et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shay Ohayon, Antonio Caravaca-Aguirre, Rafael Piestun, and James J. DiCarlo
Biomedical Optics Express, 2018, Volume 9, Number 4, Page 1492
Omer Wagner, Aditya Pandya, Yoav Chemla, Hadar Pinhas, Irina Schelkanova, Asaf Shahmoon, Yossi Mandel, Alexandre Douplik, and Zeev Zalevsky
Bioscience Reports, 2018, Volume 38, Number 1, Page BSR20170027

Comments (0)

Please log in or register to comment.
Log in