Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Optical-fluid dark line and X solitary waves in Kerr media

Fabio Baronio
  • Corresponding author
  • Istituto Nazionale di Ottica, CNR, and Dipartimento di Ingegneria dell’Informazione, Università di Brescia, Via Branze 38, 25123 Brescia, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel Onorato
  • Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy, and Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Torino, 10125 Torino, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shihua Chen / Stefano Trillo / Yuji Kodama
  • Department of Mathematics, Ohio State University, Columbus, OH 43210, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Wabnitz
  • Istituto Nazionale di Ottica, CNR, and Dipartimento di Ingegneria dell’Informazione, Università di Brescia, Via Branze 38, 25123 Brescia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-27 | DOI: https://doi.org/10.1515/odps-2017-0001


We consider the existence and propagation of nondiffractive and nondispersive spatiotemporal optical wavepackets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark line solitary wave solutions of the (2 + 1)D nonlinear Schrödinger equation (NLSE). Dark lines represent holes of light on a continuous wave background. Moreover, we consider non-trivial web patterns generated under interactions of dark line solitary waves,which give birth to dark X solitary waves. These solitary waves are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the (2 + 1)D type II Kadomtsev-Petviashvili (KP-II) equation. This finding opens a novel path for the excitation and control of optical solitary waves, of hydrodynamic nature.

Keywords: Nonlinear Optics; Self-action effects; Kerr effect; Solitons


  • [1] R. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, London, 2008).Google Scholar

  • [2] A. Weiner, Ultrafast Optics (Wiley, New York, 2009).Google Scholar

  • [3] Y. Silberberg, Collapse of optical pulses, Opt. Lett. 15, 1282 (1990).Google Scholar

  • [4] J. E. Rothenberg, Pulse splitting during self-focusing in normally dispersive media, Opt. Lett. 17, 583 (1992).CrossrefGoogle Scholar

  • [5] J. K. Ranka, R.W. Schirmer, and A. L. Gaeta, Observation of pulse splitting in nonlinear dispersive media, Phys. Rev. Lett. 77, 3783 (1996).Google Scholar

  • [6] J. R. Ranka and A. L. Gaeta, Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses, Opt. Lett. 23, 534 (1998).CrossrefGoogle Scholar

  • [7] A. A. Zozulya, S. A. Diddams, A. G. Van Egen, and T. S. Clement, Propagation Dynamics of Intense Femtosecond Pulses:Multiple Splittings, Coalescence, and ContinuumGeneration, Phys. Rev. Lett. 82, 1430 (1999).Google Scholar

  • [8] X. Liu, L. J. Qian, and F.W.Wise, Generation of Optical Spatiotemporal Solitons, Phys. Rev. Lett. 82, 4631 (1999).Google Scholar

  • [9] I.G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Self-Compression of High-Intensity Femtosecond Optical Pulses and Spatiotemporal Soliton Generation, Phys. Rev. Lett. 84, 3847 (2000).CrossrefGoogle Scholar

  • [10] H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, Kerr Spatiotemporal Self-Focusing in a Planar Glass Waveguide, Phys. Rev. Lett. 87, 043902 (2001).Google Scholar

  • [11] S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and M.Mysyrowicz, A. Couairon, and L. Bergé, Kerr Spatiotemporal Self-Focusing in a Planar Glass Waveguide, Phys. Rev. Lett. 87, 043902 (2001).Google Scholar

  • [12] P.H. Pioger, V. Couderc, L. Lefort, A. Barthelemy, F. Baronio, C. De Angelis, Spatial trapping of short pulses in Ti-indiffused LiNbO3 waveguides, Y. Min, V. Quiring, andW. Sohler, Opt. Lett. 27, 2182 (2002).Google Scholar

  • [13] F. Baronio, C. De Angelis, P.H. Pioger, V. Couderc, and A. Barthelemy, Reflection of quadratic solitons at the boundary of nonlinear media, Opt. Lett. 29, 986 (2004).CrossrefGoogle Scholar

  • [14] C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicx, and J. Trull, Nonlinear Electromagnetic X Waves, Phys. Rev. Lett. 90, 170406 (2003).Google Scholar

  • [15] P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicx, J. Trull, C. Conti, and S. Trillo, Spontaneously Generated X-Shaped Light Bullets, Phys. Rev. Lett. 91, 093904 (2003).Google Scholar

  • [16] O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Faccio, and P. Di Trapani, Emergence of X-Shaped Spatiotemporal Coherence in Optical Waves, Phys. Rev. Lett. 97, 243903 (2006).Google Scholar

  • [17] B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. - Dokl. 15, 539 (1970).Google Scholar

  • [18] J. Miles, Obliquely interacting solitary waves, J. Fluid Mech. 79, 157 (1977);CrossrefGoogle Scholar

  • [19] M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, SIAM Stud. in Appl.Math. (SIAM, Philadelphia, 1981).Google Scholar

  • [20] Y. Kodama, KP Solitons in shallowwater, J. Phys. A:Math. Theor. 43, 434004 (2010).CrossrefGoogle Scholar

  • [21] W. Li, H. Yeh and Y. Kodama, On theMach reflection of a solitary wave: revisited, J. Fluid Mech. 672, 326 (2011).Google Scholar

  • [22] E.A. Kuznetsov and S.K. Turitsyn, Instability and collapse of solitons in mediawith a defocusing nonlinearity, Sov. Phys. JEPT 67, 1583 (1988).Google Scholar

  • [23] G.A. Swartzlander and C.T. Law, Optical vortex solitons observed in Kerr nonlinear media, Phys. Rev. Lett. 69, 2503 (1992).Google Scholar

  • [24] D.E. Pelinovsky, Y.A. Stepanyants, Y.S. Kivshar, Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E 51, 5016 (1995).Google Scholar

  • [25] V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, Observation of vortex solitons created by the instability of dark soliton stripes, Opt. Lett. 21, 1129 (1996).Google Scholar

  • [26] D.J. Frantzeskakis, K. Hizanidis, B.A.Malomed, and C. Polymilis, Stable anti-dark light bullets supported by the third-order dispersion, Phys. Lett. A 248, 203 (1998).Google Scholar

  • [27] Y. Kodama and S. Wabnitz, Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers, Opt. Lett. 20, 2291 (1995).CrossrefGoogle Scholar

  • [28] F. Baronio, S. Wabnitz, and Y. Kodama, Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin, Phys. Rev. Lett. 116, 173901 (2016).Web of ScienceGoogle Scholar

  • [29] F. Baronio, S. Chen, M. Onorato, S. Trillo, S. Wabnitz, and Y. Kodama, Spatiotemporal optical dark X solitary waves, Opt. Lett. 41, 5571 (2016).CrossrefWeb of ScienceGoogle Scholar

  • [30] H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Diffraction Management, Phys. Rev. Lett. 85, 1863 (2000).Google Scholar

  • [31] Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, R. Morandotti, and D. N. Christodoulides, Discrete X-Wave Formation in NonlinearWaveguide Arrays, Phys. Rev. Lett. 98, 023901 (2007).CrossrefGoogle Scholar

  • [32] R. W. Boyd, S. G. Lukishova, Y. R. Shen, Self-focusing: Past and Present, Fundamentals and Prospects, (Springer, New York, 2009).Google Scholar

  • [33] H. C. Yuen and B. M. Lake, Instabilities of waves on deep-water, Ann. Rev. Fluid Mech. 12, 303 (1980).Google Scholar

  • [34] P. K. Newton and J. B. Keller, Stability of periodic plane waves, SIAM J. Appl. Math. 47, 959 (1987).CrossrefGoogle Scholar

  • [35] G.G. Luther, A.C. Newell, J.V. Moloney, and E.M. Wright, Shortpulse conical emission and spectral broadening in normally dispersive media, Opt. Lett. 19, 789 (1994).CrossrefGoogle Scholar

  • [36] Y. Kominis, N. Moshonas, P. Papagiannis, K. Hizanidis, and D. N. Christodoulides, Continuous wave controlled nonlinear X-wave generation, Opt. Lett. 30, 2924 (2005).CrossrefGoogle Scholar

  • [37] K. Rypdal and J. J. Rasmussen, Stability of solitary structures in the nonlinear Schrödinger equation, Phys. Scripta 40, 192 (1989).Google Scholar

  • [38] F. Baronio, C. De Angelis, M. Marangoni, C. Manzoni, R. Ramponi, and G. Cerullo, Spectral shift of femtosecond pulses in nonlinear quadratic PPSLT Crystals, Opt. Express 14, 4774 (2006).CrossrefGoogle Scholar

  • [39] K. Krupa, A. Labruyere, A. Tonello, B. M. Shalaby, V. Couderc, F. Baronio, and A. B. Aceves, Polychromatic filament in quadratic media: spatial and spectral shaping of light in crystals, Optica 2, 1058 (2015).Web of ScienceGoogle Scholar

  • [40] D. Krokel, N.J. Halas, G. Giuliani, and D. Grishkowsky, Dark pulse propagation in optical fibers, Phys. Rev. Lett. 60, 29 (1988).CrossrefGoogle Scholar

  • [41] F. Baronio, M. Conforti, C. De Angelis, A. Degasperis, M. Andreana, V.Couderc, and A. Barthelemy, Velocity-Locked Solitary Waves in Quadratic Media’, Phys. Rev. Lett. 104, 113902 (2010).Web of ScienceGoogle Scholar

About the article

Received: 2002-03-15

Revised: 2017-04-03

Accepted: 2017-04-10

Published Online: 2017-06-27

Published in Print: 2017-06-27

Citation Information: Optical Data Processing and Storage, Volume 3, Issue 1, Pages 1–7, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shihua Chen, Fabio Baronio, Jose M Soto-Crespo, Philippe Grelu, and Dumitru Mihalache
Journal of Physics A: Mathematical and Theoretical, 2017, Volume 50, Number 46, Page 463001

Comments (0)

Please log in or register to comment.
Log in