Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-8862
See all formats and pricing
More options …

Light Shaping with Holography, GPC and Holo-GPC

Andrew Bañas / Jesper Glückstad
  • Corresponding author
  • DTU Fotonik, Dept. Photonics Engineering, Techn. Univ. of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/odps-2017-0004

Abstract

Light shaping techniques based on phase-only modulation offer multiple advantages over amplitude modulation. This review examines and compares the merits of two phase modulation techniques; phase-only computer generated holography and Generalized Phase Contrast (GPC). Both techniques are briefly presented while recent developments in GPC will also be covered. Furthermore, novel hybrid schemes that inherit merits from both holography and GPC are also covered. In particular, our most recent technique coined “Holo-GPC” will be discussed in addition to earlier hybrid techniques. We will discuss how Holo-GPC utilizes the simplicity of GPC in forming well-defined speckle-free shapes and the versatility of holography in distributing these shaped beams over an extended 3D volume. To conclude, we cite applications where the combined strengths of the two photon-efficient phase-only light shaping techniques open new possibilities.

Keywords: Generalized Phase Contrast; Holography; Holo-GPC; Laser beam shaping; Fourier optics; Spatial light modulators; Phase-only modulation

References

  • [1] E. Papagiakoumou, F. Anselmi, A. Bcgue, V. de Sars, J. Glückstad, E.Y. Isacoff, V. Emiliani, Scanless two-photon excitation of channelrhodopsin-2, Nat. Methods. 7 (2010) 848-854. doi: 10.1038/nmeth.1505.Google Scholar

  • [2] E. Papagiakoumou, Optical developments for optogenetics., Biol. Cell. 105 (2013) 443-64. doi: 10.1111/boc.201200087.Google Scholar

  • [3] D.G. Grier, A revolution in optical manipulation, Nature. 424 (2003) 810-6. doi: 10.1038/nature01935.Google Scholar

  • [4] P.J. Rodrigo, V.R. Daria, J. Glückstad, Real-time threedimensional optical micromanipulation of multiple particles and living cells., Opt. Lett. 29 (2004) 2270-2. http://www.ncbi.nlm.nih.gov/pubmed/15524377.Google Scholar

  • [5] P.J. Rodrigo, L. Gammelgaard, P. Brggild, I. Perch-Nielsen, J. Glückstad, Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps., Opt. Express. 13 (2005) 6899-904. http://www.ncbi.nlm.nih.gov/pubmed/19498709.Google Scholar

  • [6] A. Banas, T. Aabo, D. Palima, J. Glückstad, Using pico-LCoS SLMs for high speed cell sorting, in: K. Dholakia, G.C. Spalding (Eds.), Proc. SPIE, 2012: p. 845838. doi: 10.1117/12.930824.Google Scholar

  • [7] F.O. Olsen, K.S. Hansen, J.S. Nielsen, Multibeam _ber laser cutting, J. Laser Appl. 21 (2009) 133-138.CrossrefGoogle Scholar

  • [8] S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices, Nature. 412 (2001) 697-8. doi: 10.1038/35089130.Google Scholar

  • [9] P. Galajda, P. Ormos, Complex micromachines produced and driven by light, Appl. Phys. Lett. 78 (2001) 249. doi: 10.1063/1.1339258.Google Scholar

  • [10] M.A. Go, C. Stricker, S. Redman, H.-A. Bachor, V.R. Daria, Simultaneous multi-site two-photon photostimulation in three dimensions., J. Biophotonics. 5 (2012) 745-53. doi: 10.1002/jbio.201100101.Google Scholar

  • [11] J. Ando, G. Bautista, N. Smith, K. Fujita, V.R. Daria, Optical trapping and surgery of living yeast cells using a single laser, Rev. Sci. Instrum. 79 (2008) 103705. doi: 10.1063/1.2999542.Google Scholar

  • [12] S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19 (1994) 780-782. doi: 10.1364/OL.19.000780.Google Scholar

  • [13] P.J. Smith, C.M. Taylor, A.J. Shaw, E.M. McCabe, Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator, Appl. Opt. 39 (2000) 2664-9. http://www.ncbi.nlm.nih.gov/pubmed/18345186.Google Scholar

  • [14] A. Ashkin, J.M. Dziedzic, Observation of Radiation-Pressure Trapping of Particles by Alternating Light Beams, Phys. Rev. Lett. 54 (1985) 1245-1248. doi: 10.1103/PhysRevLett.54.1245.Google Scholar

  • [15] H.-U. Ulriksen, J. Thogersen, S. Keiding, I.R. Perch-Nielsen, J.S. Dam, D.Z. Palima, H. Stapelfeldt, J. Glückstad, Independent trapping, manipulation and characterization by an all-optical biophotonics workstation, J. Eur. Opt. Soc. Rapid Publ. 3 (2008) 8034. doi: 10.2971/jeos.2008.08034. [16] F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, T. Hara, Phase Modulation Characteristics Analysis of Optically-Addressed Parallel-Aligned Nematic Liquid Crystal Phase-Only Spatial Light Modulator Combined with a Liquid Crystal Display, Opt. Rev. 5 (1998) 174-178. doi:10.1007/s10043-998-0174-x.Google Scholar

  • [17] N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, T. Hara, Di_raction e_ciency analysis of a parallel-aligned nematicliquid- crystal spatial light modulator., Appl. Opt. 33 (1994) 2804-11. http://www.ncbi.nlm.nih.gov/pubmed/20885639.Google Scholar

  • [18] Z. Zhang, Z. You, D. Chu, Fundamentals of phase-only liquid crystal on silicon (LCOS) devices, Light Sci Appl. 3 (2014) e213. http://dx.doi.org/10.1038/lsa.2014.94.CrossrefGoogle Scholar

  • [19] N. Collings, T. Davey, J. Christmas, D. Chu, B. Crossland, The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices, J. Disp. Technol. 7 (2011) 112-119. doi: 10.1109/JDT.2010.2049337.Google Scholar

  • [20] Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, High E_ciency Electrically-Addressable Phase-Only Spatial Light Modulator, Opt. Rev. 6 (1999) 339-344. doi: 10.1007/s10043-999-0339-2.Google Scholar

  • [21] L.J. Hornbeck, Deformable-Mirror Spatial Light Modulators, Proc. SPIE. 1150 (1990) 86-103. doi: 10.1117/12.962188.Google Scholar

  • [22] M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shaping in the ultraviolet, Appl. Phys. B. 76 (2003) 711-714. doi: 10.1007/s00340-003-1180-0.Google Scholar

  • [23] P. Chen, Y.-Q. Lu, W. Hu, Beam shaping via photopatterned liquid crystals, Liq. Cryst. 43 (2016) 2051-2061. doi: 10.1080/02678292.2016.1191685.Google Scholar

  • [24] D. Palima, A.R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, J. Glückstad, Wave-guided optical waveguides, Opt. Express. 20 (2012) 2004-14. http://www.ncbi.nlm.nih.gov/pubmed/22330441.Google Scholar

  • [25] D. Palima, A.R. Banas, G. Vizsnyiczai, L. Kelemen, T. Aabo, P. Ormos, J. Glückstad, Optical forces through guided light deflections., Opt. Express. 21 (2013) 581-93. http://www.ncbi.nlm.nih.gov/pubmed/23388951.Google Scholar

  • [26] M. Villangca, D.Z. Palima, A. Banas, J. Glückstad, Light-driven micro-tool equipped with a syringe function, Light Sci. Appl. 5 (2016).Google Scholar

  • [27] J.A. Ho_nagle, C.M. Je_erson, Design and performance of a refractive optical system that converts a Gaussian to a flattop beam., Appl. Opt. 39 (2000) 5488-99. http://www.ncbi.nlm.nih.gov/pubmed/18354545.Google Scholar

  • [28] W.B. Veldkamp, Laser beam pro_le shaping with interlaced binary diffraction gratings., Appl. Opt. 21 (1982) 3209-12. http://www.ncbi.nlm.nih.gov/pubmed/20396205.Google Scholar

  • [29] M.R. Wang, Analysis and optimization on single-zone binary flat-top beam shaper, Opt. Eng. 42 (2003) 3106. doi: 10.1117/1.1617310.Google Scholar

  • [30] S.K. Case, P.R. Haugen, O.J. Lrkberg, Multifacet holographic optical elements for wave front transformations., Appl. Opt. 20 (1981) 2670-5. http://www.ncbi.nlm.nih.gov/pubmed/20333016.Google Scholar

  • [31] I. Gur, D. Mendlovic, Di_raction limited domain flat-top generator, (1998) 237-248.Google Scholar

  • [32] A.W. Lohmann, D.P. Paris, Binary fraunhofer holograms, generated by computer., Appl. Opt. 6 (1967) 1739-48. http://www.ncbi.nlm.nih.gov/pubmed/20062296.Google Scholar

  • [33] W.H. Lee, Sampled fourier transform hologram generated by computer, Appl. Opt. 9 (1970) 639-43. http://www.ncbi.nlm.nih.gov/pubmed/20076253.Google Scholar

  • [34] T.R.M. Sales, R.P.C. Photonics, C. Road, R. Ny, Structured Microlens Arrays for Beam Shaping, in: Proc. SPIE, 2003: pp. 109-120.Google Scholar

  • [35] C. Kopp, L. Ravel, P. Meyrueis, E_cient beamshaper homogenizer design combining di_ractive optical elements, microlens array and random phase plate, J. Opt. A Pure Appl. Opt. 1 (1999) 398-403. doi: 10.1088/1464-4258/1/3/310.Google Scholar

  • [36] R. Voelkel, K.J. Weible, Laser beam homogenizing: limitations and constraints, in: A. Duparré, R. Geyl (Eds.), Proc. SPIE, 2008: p. 71020J-71020J-12. doi: 10.1117/12.799400.Google Scholar

  • [37] D. Gabor, others, A new microscopic principle, Nature. 161 (1948) 777-778.Google Scholar

  • [38] J.W. Cooley, J.W. Tukey, An algorithm for themachine calculation of complex Fourier series, Math. Comput. 19 (1965) 297-301.CrossrefGoogle Scholar

  • [39] D. Palima, V.R. Daria, Holographic projection of arbitrary light patterns with a suppressed zero-order beam, Appl. Opt. 46 (2007) 4197-201. http://www.ncbi.nlm.nih.gov/pubmed/17579674.Google Scholar

  • [40] P. Korda, G.C. Spalding, E.R. Dufresne, D.G. Grier, Nanofabrication with holographic optical tweezers, Rev. Sci. Instrum. 73 (2002) 1956. doi: 10.1063/1.1455136.Google Scholar

  • [41] I. Moreno, J. Campos, C. Goreck, M.J. Yzuel, E_ects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition, Jpn. J. Appl. Phys. 34 (n.d.) 6423-6432. http://cat.inist.fr/?aModele=a_cheN&cpsidt=2937686 (accessed July 4, 2013).Google Scholar

  • [42] R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures, Optik (Stuttg). 35 (1972) 237-246.Google Scholar

  • [43] J.R. Fienup, Phase retrieval algorithms: a comparison, Appl. Opt. 21 (1982) 2758-69. http://www.ncbi.nlm.nih.gov/pubmed/20396114.Google Scholar

  • [44] N. Masuda, T. Ito, T. Tanaka, A. Shiraki, T. Sugie, Computer generated holography using a graphics processing unit, Opt. Express. 14 (2006) 603-8. http://www.ncbi.nlm.nih.gov/pubmed/19503377.Google Scholar

  • [45] J. Liesener, M. Reicherter, T. Haist, H.J. Tiziani, Multi-functional optical tweezers using computer-generated holograms, 185 (2000) 77-82.Google Scholar

  • [46] G. Sinclair, P. Jordan, J. Leach, M.J. Padgett, J. Cooper, Defining the trapping limits of holographical optical tweezers, J. Mod. Opt. 51 (2004) 409-414. doi: 10.1080/09500340408235532.Google Scholar

  • [47] G. Thalhammer, R.W. Bowman, G.D. Love, M.J. Padgett, M. Ritsch-Marte, Speeding up liquid crystal SLMs using overdrive with phase change reduction., Opt. Express. 21 (2013) 1779-97. http://www.ncbi.nlm.nih.gov/pubmed/23389162.Google Scholar

  • [48] K. Dholakia, T. Cižmár, Shaping the future ofmanipulation, Nat. Photonics. 5 (2011) 335-342. doi: 10.1038/nphoton.2011.80.Google Scholar

  • [49] L. Ge, M. Duelli, R. Cohn, Enumeration of illumination and scanning modes from real-time spatial light modulators., Opt. Express. 7 (2000) 403-16. http://www.ncbi.nlm.nih.gov/pubmed/19407892.Google Scholar

  • [50] T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Banas, J. Glückstad, Functionalized 2PP structures for the BioPhotonics Workstation, in: D.L. Andrews, E.J. Galvez, J. Glückstad (Eds.), Proc. SPIE, 2011: p. 79500Q. doi: 10.1117/12.877189. [51] J. Glückstad, D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics, Springer Series in Optical Sciences, 2009.Google Scholar

  • [52] F. Zernike, How I Discovered Phase Contrast, Science. 121 (1955) 345-349.Google Scholar

  • [53] D. Palima, J. Glückstad, Di_ractive generalized phase contrast for adaptive phase imaging and optical security., Opt. Express. 20 (2012) 1370-7. http://www.ncbi.nlm.nih.gov/pubmed/22274481.Google Scholar

  • [54] D. Palima, A. Banas, M. Villangca, J. Glückstad, GPC and quantitative phase imaging, in: Proc. SPIE, 2016.Google Scholar

  • [55] V.R. Daria, P.J. Rodrigo, S. Sinzinger, J. Glückstad, Phase-only optical decryption in a planar integrated micro-optics system, Opt. Eng. 43 (2004) 2223-2227.CrossrefGoogle Scholar

  • [56] J.G. Lee, B.J. McIlvain, C.J. Lobb, W.T. Hill, Analogs of basic electronic circuit elements in a free-space atom chip., Sci. Rep. 3 (2013) 1034. doi: 10.1038/srep01034.Google Scholar

  • [57] J. Glückstad, Phase contrast image synthesis, Opt. Commun. 130 (1996) 225-230. doi: http://dx.doi.org/10.1016/0030-4018(96)00339-2.Google Scholar

  • [58] J. Glückstad, L. Lading, H. Toyoda, T. Hara, Lossless light projection., Opt. Lett. 22 (1997) 1373-1375. http://www.ncbi.nlm.nih.gov/pubmed/18188241.Google Scholar

  • [59] P.J. Rodrigo, V.R. Daria, J. Glückstad, Dynamically reconfigurable optical lattices, Opt. Express. 13 (2005) 1384-1394. doi: 10.1364/OPEX.13.001384.Google Scholar

  • [60] C.A. Alonzo, P.J. Rodrigo, J. Glückstad, Photon-efficient greylevel image projection by the generalized phase contrast method, New J. Phys. 9 (2007) 132-132. doi: 10.1088/1367-2630/9/5/132.Google Scholar

  • [61] J. Glückstad, D. Palima, P.J. Rodrigo, C.A. Alonzo, Laser projection using generalized phase contrast, Opt. Lett. 32 (2007) 3281-3283. doi: 10.1364/OL.32.003281.Google Scholar

  • [62] D. Palima, C.A. Alonzo, P.J. Rodrigo, J. Glückstad, Generalized phase contrast matched to Gaussian illumination, Opt. Express. 15 (2007) 11971-7. http://www.ncbi.nlm.nih.gov/pubmed/19547560.Google Scholar

  • [63] A. Banas, D. Palima, M. Villangca, T. Aabo, J. Glückstad, GPC light shaper for speckle-free one- and two- photon contiguous pattern excitation, Opt. Express. 7102 (2014) 5299-5310. doi: 10.1364/OE.22.005299.Google Scholar

  • [64] A. Banas, O. Kopylov, M. Villangca, D. Palima, J. Glückstad, GPC Light Shaper: static and dynamic experimental demonstrations, Opt. Express. (2014). doi: 10.1364/OE.22.023759.Google Scholar

  • [65] S. Tauro, A. Banas, D. Palima, J. Glückstad, Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper., Opt. Express. 19 (2011) 7106-11. http://www.ncbi.nlm.nih.gov/pubmed/21503023.Google Scholar

  • [66] J. Glückstad, P.C. Mogensen, Optimal phase contrast in common-path interferometry., Appl. Opt. 40 (2001) 268-82. http://www.ncbi.nlm.nih.gov/pubmed/18357000.Google Scholar

  • [67] S. Tauro, A. Banas, D. Palima, J. Glückstad, Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper, Opt. Express. 19 (2011) 7106-11. http://www.ncbi.nlm.nih.gov/pubmed/21503023.Google Scholar

  • [68] D. Palima, J. Glückstad, Multi-wavelength spatial light shaping using generalized phase contrast, Opt. Express. 16 (2008) 1331-42. http://www.ncbi.nlm.nih.gov/pubmed/18542205.Google Scholar

  • [69] O. Kopylov, A. Banas, M. Villangca, D. Palima, J. Glückstad, GPC light shaping a supercontinuum source, Optics Express 23 (2015) 1894-1905. doi: 10.1364/OE.23.00184.Google Scholar

  • [70] Y. Tanaka, S. Tsutsui, M. Ishikawa, H. Kitajima, Hybrid optical tweezers for dynamic micro-bead arrays., Opt. Express. 19 (2011) 15445-51. http://www.ncbi.nlm.nih.gov/pubmed/21934908.Google Scholar

  • [71] S. Tauro, A. Banas, D. Palima, J. Glückstad, Dynamic axial stabilization of counter-propagating beam-traps with feedback control, Opt. Express. 18 (2010) 18217-22. http://www.ncbi.nlm.nih.gov/pubmed/20721211.Google Scholar

  • [72] H.-U. Ulriksen, J. Thogersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Palima, H. Stapelfeldt, J. Glückstad, Independent trapping, manipulation and characterization by an all-optical biophotonics workstation, J. Eur. Opt. Soc. Rapid Publ. 3 (2008). doi: 10.2971/jeos.2008.08034.Google Scholar

  • [73] M. Villangca, A. Banas, D. Palima, J. Glückstad, Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides, Opt. Express. 22 (2014) 17880-17889. doi: 10.1364/OE.22.017880.Google Scholar

  • [74] A. Banas, T. Aabo, D. Palima, J. Glückstad, Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting, Optics Express 21 (2013) 1849-1856. doi: 10.1002/jbio.201100101.D.Google Scholar

  • [75] A. Banas, J. Glückstad, Holo-GPC: Holographic Generalized Phase Contrast, Opt. Commun. 392 (2017) 190-195. doi: http://dx.doi.org/10.1016/j.optcom.2017.01.036.Google Scholar

  • [76] D. Palima, C.A. Alonzo, P.J. Rodrigo, J. Glückstad, Generalized phase contrastmatched to Gaussian illumination, Opt. Express. 15 (2007) 11971-11977. http://www.ncbi.nlm.nih.gov/pubmed/19547560.Google Scholar

  • [77] A.R. Banas, M.J. Villangca, D. Palima, J. Glückstad, Dark GPC, in: SPIE OPTO, 2016: p. 97640H-97640H.Google Scholar

  • [78] F. Kenny, F.S. Choi, J. Glückstad, M.J. Booth, Adaptive optimisation of a generalised phase contrast beam shaping system, Opt. Commun. 342 (2015) 109-114. doi: 10.1016/j.optcom.2014.12.059.Google Scholar

  • [79] R. Porras-Aguilar, K. Falaggis, J.C. Ramirez-San-Juan, R. Ramos-Garcia, Self-calibrating common-path interferometry, Opt. Express. 23 (2015) 3327. doi: 10.1364/OE.23.003327.Google Scholar

  • [80] M.J. Villangca, A.R. Banas, D. Palima, J. Glückstad, Dark GPC: extended nodal beam areas from binary-only phase, Opt. Eng. 55 (2016) 125102. doi: 10.1117/1.OE.55.12.125102.Google Scholar

  • [81] G.J. Ruane, G.A. Swartzlander, S. Slussarenko, L.Marrucci, M.R. Dennis, Nodal areas in coherent beams, Optica. 2 (2015) 147-150. doi: 10.1364/OPTICA.2.000147.Google Scholar

  • [82] V. Daria, J. Glückstad, P.C. Mogensen, R.L. Eriksen, S. Sinzinger, Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform., Opt. Lett. 27 (2002) 945-7. http://www.ncbi.nlm.nih.gov/pubmed/18026332.Google Scholar

  • [83] D. Palima, J. Glückstad, Gaussian to uniform intensity shaper based on generalized phase contrast, Opt. Express. 16 (2008) 1507-16. http://www.ncbi.nlm.nih.gov/pubmed/18542226.Google Scholar

  • [84] M. Villangca, A. Banas, O. Kopylov, D. Palima, J. Glückstad, Optimal illumination of phase-only di_ractive element using GPC light shaper, in: Proc. SPIE, 2015: pp. 9379-24.Google Scholar

  • [85] M. Villangca, A. Banas, D. Palima, J. Glückstad, GPC-enhanced read-out of holograms, Opt. Commun. 351 (2015) 121-127. doi: http://dx.doi.org/10.1016/j.optcom.2015.04.057.Google Scholar

  • [86] H.O.Bartelt, Applications of the tandem component: an element with optimum light e_ciency., Appl. Opt. 24 (1985) 3811. http: //www.ncbi.nlm.nih.gov/pubmed/18224124.Google Scholar

  • [87] H.O. Bartelt, Computer-generated holographic component with optimum light efficiency., Appl. Opt. 23 (1984) 1499. http://www.ncbi.nlm.nih.gov/pubmed/18224124.Google Scholar

  • [88] A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, M. Ritsch-Marte, Near-perfect hologramreconstructionwith a spatial light modulator., Opt. Express. 16 (2008) 2597-603. http://www.ncbi.nlm.nih.gov/pubmed/18542342.Google Scholar

  • [89] M.A. Go, P.-F. Ng, H. a Bachor, V.R. Daria, Optimal complex field holographic projection., Opt. Lett. 36 (2011) 3073-5. http://www.ncbi.nlm.nih.gov/pubmed/21847164.Google Scholar

  • [90] D. Palima, J. Glückstad, Comparison of generalized phase contrast and computer generated holography for laser image projection, Opt. Express. 16 (2008) 5338-5349. http://www.ncbi.nlm.nih.gov/pubmed/18542636.Google Scholar

  • [91] A. Banas, D. Palima, J. Glückstad,Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming., Opt. Express. 20 (2012) 9705-9712. http://www.ncbi.nlm.nih.gov/pubmed/22535062.Google Scholar

  • [92] A. Martínez, N. Beaudoin, I. Moreno, M.D.M. Sánchez-López, P. Velásquez, Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator, J. Opt. A Pure Appl. Opt. 8 (2006) 1013-1018. doi: 10.1088/1464-4258/8/11/013.Google Scholar

  • [93] Syndiant SYL2043 Product Brief, (n.d.). http://syndiant.com/pdfs/SYL2043_ProductBrief.pdf.Google Scholar

  • [94] J. Yamamoto, T. Iwai, Spatial Stability of Particles Trapped by Time-Division Optical Tweezers, Int. J. Optomechatronics. 3 (2009) 253-263. doi: 10.1080/15599610903391168.Google Scholar

  • [95] I. Perch-Nielsen, D. Palima, J. Dam, J. Glückstad, Parallel particle identification and separation for active optical sorting, J. Opt. A Pure Appl. Opt. 11 (2009) 34013. doi: 10.1088/1464-4258/11/3/034013.Google Scholar

  • [96] A. Banas, T. Aabo, D. Palima, J. Glückstad, Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting, Opt. Express. 21 (2013) 388-394. doi: 10.1002/jbio.201100101.D.Google Scholar

  • [97] A. Banas, D. Palima, J. Glückstad, Matched-filtering generalized phase contrast using LCoS pico-projectors for beamforming., Opt. Express. 20 (2012) 9705-12. http://www.ncbi.nlm.nih.gov/pubmed/24258701.Google Scholar

  • [98] H. Dammann, E. Klotz, Coherent Optical Generation and Inspection of Two-dimensional Periodic Structures, Opt. Acta Int. J. Opt. 24 (1977) 505-515. doi: 10.1080/713819570.Google Scholar

  • [99] M. Zenou, M. Reznikov, M. Manevich, J. Varshal, Y. Reznikov, Z. Kotler, Adaptive beam shaper based on a single liquid crystal cell, Opt. Commun. 290 (2013) 115-117. doi: 10.1016/j.optcom.2012.10.018.Google Scholar

About the article

Received: 2017-02-13

Revised: 2017-04-09

Accepted: 2017-05-01

Published Online: 2017-07-05

Published in Print: 2017-06-27


Citation Information: Optical Data Processing and Storage, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2017-0004.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in