Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

Open Access
See all formats and pricing
More options …

Plasmonic Nanocavities-based Aperiodic crystal for Protein-Protein Recognition SERS sensors

M. Rippa
  • Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Castagna
  • Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Pannico / P. Musto / E. Bobeico / J. Zhou / L. Petti
  • Corresponding author
  • Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/odps-2017-0007


The revelation of protein-protein interactions is one of the main preoccupations in the field of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we present a detailed experimental study of the use of aperiodic photonic nanocavities for plasmonic Surface Enhanced Raman Scattering (SERS) protein detection and recognition. The plasmonic crystal is designed on a 2D Thue-Morse array configuration. The SERS nanosensor is coated with a proper self-assembled monolayer to covalently bind Bovine Serum Albumin that is a well known model to study biological (specifically, protein) systems. The performance of the nanosensor is assessed by recording a new Raman (SERS) peak in the fingerprint region and by a giant enhancement of the SERS signal intensity, both reported and discussed.

Keywords: Photonic Crystals; Plasmonics; Sensors; Nanofabrication; Nanolithography; Raman; Surface Enhanced Raman Scattering (SERS); Localized Surface Plasmonic Resonance (LSPR); Metamaterials


  • [1] M. A. Cooper, V. T. Singleton, “A Survey of the 2001 to 2005 Quartz Crystal Microbalance Biosensor Literature: Applications of Acoustic Physics to the Analysis of Biomolecular Interactions,” J. Mol. Recognit., 20, 154 (2007).Web of ScienceGoogle Scholar

  • [2] J. S. Daniels, N. Pourmand, “Label-Free Impedance Biosensors: Opportunities and Challenges,” Electroanalysis, 19, 1239 (2007).CrossrefGoogle Scholar

  • [3] J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev., 108, 462 (2008).Web of ScienceGoogle Scholar

  • [4] M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev., 43, 1230 (2014).Web of ScienceGoogle Scholar

  • [5] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater., 7, 443 (2008).Google Scholar

  • [6] T. V. Shahbazyan and M. I. Stockman (eds.), “Plasmonics: Theory and Applications,” Challenges and Advances in Computational Chemistry and Physics 15, Springer Science, ISBN 978-94-007-7804-7 (2013).Google Scholar

  • [7] R. F. Aroca, “Plasmon enhanced spectroscopy,” Phys. Chem. Chem. Phys., 15, 5355 (2013).CrossrefGoogle Scholar

  • [8] S. Zeng, D. Baillargeat,H.-P. Hod, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications ,” Chem. Soc. Rev., 43, 3426 (2014).Google Scholar

  • [9] T. Vo-Dinh, A. M. Fales, G. D. Gri_n, C. G. Khoury, Y. Liu, H. Ngo, S. J. Norton, J. K. Register, H.-N. Wang, and H. Yuan,”Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy,” Nanoscale, 5, 10127 (2013).Google Scholar

  • [10] Z. Fang and X. Zhu, “Plasmonics in nanostructures ,” Adv. Mater., 25, 3840 (2013).Google Scholar

  • [11] M. M. Harper, K. S. McKeating, and K. Faulds, “Recent developments and future directions in SERS for bioanalysis,” Phys.Chem. Chem. Phys., 15, 5312 (2013).Web of ScienceCrossrefGoogle Scholar

  • [12] M. Vendrell, K. K. Maiti, K. Dhaliwal, and Y.-T. Chang, “Surfaceenhanced Raman scattering in cancer detection and imaging,” Trends Biotechnol., 31, 249 (2013).CrossrefGoogle Scholar

  • [13] W. Xie and S. Schlucker, “Medical applications of surfaceenhanced Raman scattering,” Phys.Chem. Chem. Phys., 15, 5329 (2013).CrossrefGoogle Scholar

  • [14] L. Petti, R. Capasso, M. Rippa, M. Pannico, P. La Manna, G. Peluso, A. Calarco, E. Bobeico, and P. Musto, “A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications,” Vibrational Spectroscopy, 82, 22 (2016).Web of ScienceGoogle Scholar

  • [15] J. Zheng and L. He, “Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food,” CRFSFS, 13, 317 (2014).Web of ScienceGoogle Scholar

  • [16] J. Hughes, E. L. Izake, W. B. Lott, G. A. Ayoko, and M. Sillence, “Ultra sensitive label free surface enhanced Raman spectroscopy method for the detection of biomolecules,” Talanta, 130, 20 (2014).Web of ScienceGoogle Scholar

  • [17] S.-C. Luo, K. Sivashanmugan, J.-D. Liao, C.-K. Yao and H.-C. Peng, “Nanofabricated SERS-active substrates for singlemolecule to virus detection in vitro: a review,” Biosens Bioelectron, 61, 232 (2014)CrossrefGoogle Scholar

  • [18] Y. L. Shu, J. Zhou, X. Yuan, L. Petti, J. Chen, Z. Jia and P. Mormile, “Highly Sensitive Immunoassay Based on SERS Using Nano-Au Immune Probes and a Nano-Ag Immune Substrate,” Talanta, 123, 161-168, (2014)Google Scholar

  • [19] D. Chen, J. Zhou, M. Rippa and L. Petti, “Structure-dependent LSPR Characteristics and SERS Performances of Quasi-periodic Nano-arrays: Measurements and Analysis,” J. Appl. Phys., 118, 163101 (2015).Google Scholar

  • [20] M. Rippa, R. Castagna, M. Pannico, P. Musto, E. Bobeico, J. Zhou, and L. Petti, “High-performance Nanocavities-based Meta-crystals for Enhanced Plasmonic Sensing,” Opt. Data Process. Storage, 2, 7 (2016).Google Scholar

  • [21] L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev., 1-41 (2011).Google Scholar

  • [22] L. Dal Negro, M. Stol_, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc and J. Haavisto, “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Appl. Phys. Lett., 84, 5186 (2004).Google Scholar

  • [23] V. Matarazzo, S. De Nicola, G. Zito, P. Mormile, M. Rippa, G. Abbate, J. Zhou, and L. Petti, “Spectral characterization of twodimensional Thue-Morse quasicrystals realized with high resolution lithography,” J. Opt., 13, 015602 (2011).Google Scholar

  • [24] M. Rippa, R. Capasso, P. Mormile, S. De Nicola, M. Zanella, L. Manna, G. Nenna, and L. Petti, “Bragg extraction of light in 2D photonic thue-morse quasicrystals patterned in active CdSe/CdS nanorod-polymer nanocomposites,” Nanoscale, 5, 331 (2013).Google Scholar

  • [25] L. Moretti and V. Mocella, “The square Thue-Morse tiling for photonic application,” Philosophical Magazine, 88, 2275 (2008).CrossrefWeb of ScienceGoogle Scholar

  • [26] H.-F. Zhang, S.-B. Liu, and X.-K. Kong, “Enlarged the omnidirectional band gap in one-dimensional plasma photonic crystals with ternary Thue-Morse aperiodic structure,” Physica B, 410, 244 (2013).Google Scholar

  • [27] M. Rippa, R. Capasso, L. Petti, G. Nenna, A. De Girolamo Del Mauro, M.G. Maglione and C. Minarini, ”Nanostructured PEDOT: PSS _lm with Two-dimensional Photonic Quasi Crystals for Efficient White OLED Devices,” J. Mater. Chem. C, 3 (1), 147-152, (2015).Google Scholar

  • [28] V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M.G. Maglione, N. Tabiryan and C. Umeton, “ Electro/All Optical Light Extraction in Gold Photonic Quasi-Crystals Layered with Photosensitive Liquid Crystals”, Adv. Opt. Mater, 2: 950-955 (2014).CrossrefGoogle Scholar

  • [29] C. Chothia and J. Janin, "Principles of protein-protein recognition", Nature, 256, 705-708 (1975).Google Scholar

  • [30] J. Janin, "Protein-protein recognition", Prog. Biophys. Molec. Journal, 64, 145-166 (1995).CrossrefGoogle Scholar

  • [31] Chakrabarti P., Janin J., "Dissecting protein-protein recognition sites", Proteins, 47, 334-43 (2002)Google Scholar

  • [32] Qian Wang, Pengzhi Zhang, Laurel Hoffman, Swarnendu Tripathi, Dirar Homouz, Yin Liu, M. Neal Waxham, and Margaret S. Cheung, "Protein recognition and selection through conformational and mutually induced fit", Proc. Nat. Acad. Sci., 110, 51, 20545-20550 (2013).Google Scholar

  • [33] M. Rippa, R. Castagna, M. Pannico, P. Musto, V. Tkachenko, J. Zhou, and L. Petti, “Engineered plasmonic Thue-Morse nanostructures for LSPR detection of the pesticide Thiram,” Nanophotonics, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0146. (2017).CrossrefGoogle Scholar

  • [34] F. Domenici, A. R. Bizzarri, S. Cannistraro, SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor, International Journal of Nanomedicine, 6, 2033-2042 (2011).Web of ScienceGoogle Scholar

  • [35] F. Domenici, A. R. Bizzarri, S. Cannistraro, "Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum", Analytical Biochemistry, 421, 9-15, 2012.Web of ScienceGoogle Scholar

About the article

Received: 2017-01-28

Revised: 2017-04-28

Accepted: 2017-05-23

Published Online: 2017-07-05

Published in Print: 2017-06-27

Citation Information: Optical Data Processing and Storage, Volume 3, Issue 1, Pages 54–60, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2017-0007.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mohammad Hossein Motavas and Abbas Zarifkar
Optics Express, 2019, Volume 27, Number 15, Page 21579
Remigiusz K. Trojanowicz, Katarzyna Matczyszyn, Riccardo Castagna, Massimo Rippa, Eugenia Bobeico, Jun Zhou, and Lucia Petti
The Journal of Physical Chemistry C, 2019, Volume 123, Number 29, Page 17961
M Rippa, R Castagna, J Zhou, R Paradiso, G Borriello, E Bobeico, and L Petti
Nanotechnology, 2018, Volume 29, Number 40, Page 405501
Rakesh Dhama, Vincenzo Caligiuri, Lucia Petti, Alireza R. Rashed, Massimo Rippa, Raffaella Lento, Roberto Termine, Humeyra Caglayan, and Antonio De Luca
ACS Nano, 2017

Comments (0)

Please log in or register to comment.
Log in