Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

1 Issue per year

Open Access
See all formats and pricing
More options …

THz plasmonic resonances in hybrid reduced-graphene-oxide and graphene patterns for sensing applications

Davide Mencarelli
  • Corresponding author
  • Università Politecnica delle Marche, Ancona, Italy
  • National Institute of Nuclear Physiscs, LNF, Frascati, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuta Nishina / Atsushi Ishikawa / Luca Pierantoni
  • Università Politecnica delle Marche, Ancona, Italy and National Institute of Nuclear Physiscs, LNF, Frascati, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefano Bellucci
Published Online: 2017-09-06 | DOI: https://doi.org/10.1515/odps-2017-0011


In this contribution, we effectively combine important developments of nowadays technology: graphene based THz plasmonics, reduced-graphene-oxide (rGO) based sensors, and capability of patterning graphene materials at micro and nano scale. Surface waves in graphene were observed for the first time only few years ago, confirming the ability of this exceptional material to support plasmons at relatively low frequencies - a few THz - due to its intrinsically huge selfinductance. On the other hand, graphene oxide, and its reduced forms, has emerged as a very interesting material for several applications, including gas sensors and biosensors. In this work, the possibility of a _ne and controlled patterning of the above materials is considered as a useful degree of freedom to govern plasmon resonances and consequent electromagnetic absorption. In particular, the excitation of THz plasmons in arrays of nanoribbons, made of graphene and rGO, has been deeply investigated, in order to quantify the sensitivity to surface changes of conductivity, due to possible external perturbations. Fullwave analysis of hybrid metal-graphene-rGO is also presented and discussed. The effects of substrate thickness and of higher diffraction modes are rigorously taken into account, as a possible mean to enhance the sensing capability of the proposed device.

Keywords: THz Plasmons; Reduced Graphene Oxide; Sensing Applications


  • [1] Hill, E.W.; Vijayaragahvan, A.; and Novoselov, K; Graphene Sensors, IEEE Sensors Journal, 2011, vol. 11, n. 12, 3161-3170.CrossrefGoogle Scholar

  • [2] He, Q.;Wu, S.; Yin Z.; and Zhang, H.; Graphene-based electronic sensors, Chem. Sci., 2012, 3, 1764-1772.CrossrefGoogle Scholar

  • [3] Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors , Sensors and Actuators B 2012, 173, 1-21.Web of ScienceGoogle Scholar

  • [4] Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; and Weiller, B. H.; Practical Chemical Sensors from Chemically Derived Graphene, ACS NANO, 2009, vol. 3, n. 2, 301-306.Web of ScienceCrossrefGoogle Scholar

  • [5] J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan, “Reduced GrapheneOxideMolecular Sensors”, Nano Lett., 2008, 8, 3137-3140.Google Scholar

  • [6] Chen J. et al., Optical nano-imaging of gate-tunable graphene plasmons, Nature 2012, 487, 77-81.Google Scholar

  • [7] Luo, X.; Qiu, T.; Lu, W.; Ni, Z. Plasmons in graphene: Recent progress and Applications, Materials Science and Engineering R Reports 2013, 74(11), 351-376.CrossrefGoogle Scholar

  • [8] Sharma, D.; Kanchi, S.; Sabela, M. I.; Bisetty, K., Insight into the biosensing of graphene oxide: Present and future prospects, Arabian Journal of Chemistry 2016, 9, 238-261.Google Scholar

  • [9] Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; and Zboril, R.; Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications, Chem. Rev., 2016, 116, 5464-5519.Google Scholar

  • [10] Kim, J. A.; Hwang, T.; Dugasanic, S. R.; Amin, R.; Kulkarni, A.; Park, S. H.; Kim, T. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications, Sensors and Actuators B 2013, 187, 426-433.Google Scholar

  • [11] Chiu, N.-F.; Huang T.-Y.; and Lai H.-C., Graphene Oxide Based Surface Plasmon Resonance Biosensors”, Nanotechnology and Nanomaterials, Advances in Graphene Science, book edited by M. Aliofkhazraei, ISBN 978-953-51-1182-5, Published: July 31, 2013 under CC BY 3.0 license.Google Scholar

  • [12] Ishikawa, A.: and Tanaka, T. Plasmon hybridization in graphene metamaterials, Applied Physics Letters 2013, 102, 253110.Web of ScienceGoogle Scholar

  • [13] Yatooshi, T.; Ishikawa, A.; and Tsuruta, K. Terahertz wavefront control by tunable metasurface made of graphene ribbons, Applied Physics Letters 2015, 107, 053105.Web of ScienceGoogle Scholar

  • [14] Mencarelli, D.; Bellucci, S.; Sindona, A.; Pierantoni, L. Spatial dispersion efiects upon local excitation of extrinsic plasmons in a graphene micro-disk, Journal of Physics D: Applied Physics, 2015, vol. 48, issue 46, art. no. 465104.Google Scholar

  • [15] Jadidi, M. M.; Rachael, A. B. S.; Myers-Ward, L.; Boyd, A. K.; Daniels, K. M.; Gaskill, D. K.; Fuhrer, M. S.; Drew, H. D.; andMurphy, T. E. Tunable Terahertz Hybrid Metal-Graphene Plasmons, Nano Letters 2015, 15, 7099-7104.Web of ScienceGoogle Scholar

  • [16] Arul, R.; Oosterbeek, R. N.: Robertson, J.; Xu; Jin, J.; Simpson M. C. The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement, Carbon, 2016, 99, 423-431.Google Scholar

  • [17] Tu, Y.; Utsunomiya, T.; Ichii, T.; and Sugimura, H. Vacuum- Ultraviolet PromotedOxidative Micro Photoetching of Graphene Oxide, ACS Appl. Mater. Interfaces 2016, 8 (??), 10627-10635Google Scholar

  • [18] Islam, A. E.; Kim, S. S.; Rao, R.; Ngo, Y.; Jiang, J.; Nikolaev, P.; Naik, R.; Pachter, R.; Boeckl, J.; and Maruyama, B. Photothermal oxidation of single layer graphene, RSC Adv. 2016, 6, 42545-42553.Google Scholar

  • [19] Lee, Y. K.; Choi, H.; Lee, C.; Lee, H.; C. Goddeti, K.; Moon, S. Y.; Doh, W. H.; Baik, J.; Kim, J.-S.; Choi, J. S.; Choi C.-G.; and Park, J. Y. Charge transport-driven selective oxidation of graphene, Nanoscale, 2016, 8, 1149.Google Scholar

  • [20] Byun, I.-S. ; Yoon, D.; Choi, J. S.; Hwang, I.; Hyun Lee, D.; Lee, M. J.; Kawai, T.; Son, Y.-W.; Jia, Q. Nanoscale Lithography on Monolayer Graphene Using Hydrogenation andOxidation, ACS NANO, 2011, vol. 5, n. 8, 6417-6424.CrossrefGoogle Scholar

  • [21] Zimmermann, S.; Duellen, A. V.; Wieghaus, M.; Barragán, S. A. G.; Fatikow, S. Resist-free processing of graphene merging optical imaging and classification with scanning probe lithography, International Journal of Optomechatronics, Published online: 02 Aug 2016.Google Scholar

  • [22] Aldrigo M.; Dragoman M.; Pierantoni L.; Mencarelli D.; Deligeorgis G., Back-gate bias of a graphene antenna via a smart background metallization, IEEE International Semiconductor Conference (CAS) 2015, DOI: 10.1109/SMICND.2015.7355185.CrossrefGoogle Scholar

  • [23] Dragoman, M.; Neculoiu, D.; Bunea, A.-C.; Deligeorgis, G.; Aldrigo, M.; Vasilache, D.; Dinescu, A.; Konstantinidis, G.; Mencarelli, D.; Pierantoni L.; and Modreanu, M. A tunable microwave slot antenna based on graphene, Applied Physics Letters 2015, 106(15): 153101.Web of ScienceGoogle Scholar

  • [24] Nouchi, R.; Saito, T.; and Tanigaki, K., Determination of Carrier Type Doped from Metal Contacts to Graphene by Channel- Length-Dependent Shift of Charge Neutrality Points, Applied Physics Express 2011, 4(3), 035101-3.Web of ScienceGoogle Scholar

  • [25] Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2, Nature Nanotechnology 2008, 3(4): 206-9CrossrefGoogle Scholar

  • [26] Mencarelli, D.; Rozzi, T, Multimode Transverse Resonance of Multilayer Crystal Slabs, Journal of Lightwave Technology 2006, 24(12), pages: 5025 - 5030.Google Scholar

  • [27] Pozar, David M. Microwave Engineering, Third Edition (Intl. Ed.); JohnWiley & Sons, Inc. 2005 pages 170-174. ISBN 0-471-44878-8.Google Scholar

  • [28] Zinenko T. L.;, Matsushima, A.; and Nosich A. I.; IEEE Journal of Selected Topics in Quantum Electronics 23(4) 2017 4601809Google Scholar

About the article

Received: 2017-04-20

Revised: 2017-06-13

Accepted: 2017-06-14

Published Online: 2017-09-06

Published in Print: 2017-08-28

Citation Information: Optical Data Processing and Storage, Volume 3, Issue 1, Pages 89–96, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2017-0011.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Luis T. Quispe, J. W. Menezes, W. Chong, Lizandro B. R. Zegarra, and L. E. G. Armas
Optics Express, 2018, Volume 26, Number 24, Page 31253

Comments (0)

Please log in or register to comment.
Log in